Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T23:00:15.224Z Has data issue: false hasContentIssue false

Cost-effectiveness of human papillomavirus vaccination in Belgium: Do not forget about cervical cancer screening

Published online by Cambridge University Press:  15 April 2009

Nancy Thiry
Affiliation:
Belgian Health Care Knowledge Centre (KCE)
Chris De Laet
Affiliation:
Belgian Health Care Knowledge Centre (KCE)
Frank Hulstaert
Affiliation:
Belgian Health Care Knowledge Centre (KCE)
Mattias Neyt
Affiliation:
Belgian Health Care Knowledge Centre (KCE)
Michel Huybrechts
Affiliation:
Belgian Health Care Knowledge Centre (KCE)
Irina Cleemput
Affiliation:
Belgian Health Care Knowledge Centre (KCE)

Abstract

Objectives: The cost-effectiveness of adding a human papillomavirus (HPV) vaccination program in 12-year-old females to the recommended cervical cancer screening in Belgium is examined. Moreover, the health and economic consequences of a potential decline in screening uptake after initiation of a HPV vaccination program are investigated.

Methods: A static Markov model is developed to estimate the direct effect of vaccination on precancerous lesions and cervical cancers.

Results: Vaccination is estimated to avoid 20 percent of the cervical cancers occurring in a 12-year-old girls' cohort and to cost €32,665 per quality-adjusted life-year (QALY) gained (95 percent credibility interval [CrI]: €17,447 to €68,078), assuming a booster injection after 10 years, a limited duration of protection and discounting costs and effects at 3 percent and 1.5 percent, respectively. Assuming lifelong protection, HPV vaccination is estimated to cost €14,382 (95 percent CrI: €9,238 to €25,644) per QALY gained, while avoiding 50 percent of the cervical cancer cases. In the base-case, a 10 percent reduction in screening compliance after vaccination obliterates the effect of vaccination on cervical cancer cases avoided, whereas further declines in the level of screening compliance even turned out to be detrimental for the cohort's health, inducing a mean loss in QALYs and life-year gained compared with the situation prevaccination.

Conclusions: An HPV vaccination program should only be considered if the level of screening after vaccination can be maintained.

Type
General Essays
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Anonymous. Sterftetafels 2001: Verwachte levensduur, sterftekans en overlevingskans. In: FOD Economie, K.M.O., Energie, Middenstand en, editor. Brussels: Belgium; 2001.Google Scholar
2. Arveux, P, Benard, S, Bouee, S et al. , Invasive cervical cancer treatment costs in France. Bull Cancer. 2007;94:219224.Google Scholar
3. Belgian Cancer Registry Foundation. Stichting Kankerregister – Fondation Registre du Cancer. Brussels: Belgium; 2007.Google Scholar
4. Belgisch Centrum voor Farmacotherapeutische Informatie. Gecommentarieerd geneesmiddelenrepertorium. Ghent: Belgium; 2007.Google Scholar
5. Bergeron, C, Largeron, N, McAllister, R, Mathevet, P, Remy, V. Cost-effectiveness analysis of the introduction of a quadrivalent human papillomavirus vaccine in France. Int J Technol Assess Health Care. 2008;24:1019.CrossRefGoogle ScholarPubMed
6. Beutels, P, Van Damme, P, Oosterhuis-Kafeja, F. Effects and costs of pneumococcal conjugate vaccination of Belgian children. Health Technology Assessement (HTA). KCE reports. Brussels: Centre fédéral d'expertise des soins de santé (KCE); 2006.Google Scholar
7. Bilcke, J, Beutels, P, De Smet, F et al. , Cost-effectiveness analysis of rotavirus vaccination of Belgian infants. Heath Technology Assessment (HTA). KCE reports. Brussels: Belgian Health Care Knowledge Centre (KCE); 2007.Google Scholar
8. Boot, HJ, Wallenburg, I, de Melker, HE et al. , Assessing the introduction of universal human papillomavirus vaccination for preadolescent girls in The Netherlands. Vaccine. 2007;25:62456256.Google Scholar
9. Brisson, M, Edmunds, WJ. Economic evaluation of vaccination programs: The impact of herd-immunity. Med Decis Making. 2003;23:7682.Google Scholar
10. Brisson, M, Van de Velde, N, De Wals, P, Boily, M-C. The potential cost-effectiveness of prophylactic human papillomavirus vaccines in Canada. Vaccine. 2007;25:53995408.Google Scholar
11. Center for Biologics Evaluation and Research (CBER). Vaccines and Related Biological Products Advisory Committee – May, 18, 2006. GardasilTM: Quadrivalent Human Papillomavirus 6, 11, 16, 18 L1 VLP Vaccine. (Slide show by N. Miller). Rockville, MD: US Food and Drug Administration; 2006.Google Scholar
12. Chesson, HW, Ekwueme, DU, Saraiya, M, Markowitz, LE. Cost-effectiveness of human papillomavirus vaccination in the United States. Emerg Infect Dis. 2008;14:244251.Google Scholar
13. Cleemput, I. Measuring self-reported health: An international perspective based on EQ-5D. Budapest: SpringMed Publishing; 2004.Google Scholar
14. Cleemput, I, Van Wilder, P, Vrijens, F, Huybrechts, M, Ramaekers, D. Guidelines for pharmaco-economic evaluations in Belgium. Health Technology Assessment (HTA). In: (KCE), F.K.v.d.G., editor. KCE Reports. Brussels: Belgian Health Care Knowledge Centre (KCE); 2008.Google Scholar
15. Conseil Supérieur dela Santé–Hoge Gezondheidsraad. Vaccination contre les infections causées par le papillomavirus humain. Bruxelles: Service Public Fédéral–Santé Publique; 2007:34.Google Scholar
16. Danish Centre for Health Technology Assessment. Reduction in the risk of cervical cancer by vaccination against human papillomavirus (HPV)—a health technology assessment. Copenhagen: Danish Centre for Health Technology Assessment; 2007.Google Scholar
17. Day, N, Moss, S, Berrino, F, Choi, N, Clarke, E. Screening for squamous cervical cancer: Duration of low risk after negative results of cervical cytology and its implication for screening policies. IARC Working Group on evaluation of cervical cancer screening programmes. Br Med J (Clin Res Ed). 1986;293:659664.Google Scholar
18. Elbasha, EH, Dasbach, EJ, Insinga, RP. Model for assessing human papillomavirus vaccination strategies. Emerg Infect Dis. 2007;13:2841.CrossRefGoogle ScholarPubMed
19. Fraser, C, Tomassini, JE, Xi, L et al. , Modeling the long-term antibody response of a human papillomavirus (HPV) virus-like particle (VLP) type 16 prophylactic vaccine. Vaccine. 2007;25:43244333.CrossRefGoogle ScholarPubMed
20. Future II Study Group. Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N Engl J Med. 2007;356:19151927.CrossRefGoogle Scholar
21. Garland, SM, Hernandez-Avila, M, Wheeler, CM et al. , Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. N Engl J Med. 2007;356:19281943.CrossRefGoogle ScholarPubMed
22. Goldie, SJ, Kohli, M, Grima, D et al. , Projected clinical benefits and cost-effectiveness of a human papillomavirus 16/18 vaccine. J Natl Cancer Inst. 2004;96:604615.Google Scholar
23. Harper, DM, Franco, EL, Wheeler, C et al. , Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: A randomised controlled trial. Lancet. 2004;364:17571765.Google Scholar
24. Hulstaert, F, Arbyn, M, Huybrechts, M et al. , Cervical cancer screening and human papillomavirus (HPV) testing. KCE reports 38C. Brussels: Belgian Health Care Knowledge Centre (KCE); 2006.Google Scholar
25. International Agency for Research on Cancer, World Health Organization. Cervix cancer screening. Lyon: IARC Press; 2005.Google Scholar
26. Kulasingam, S, Connelly, L, Conway, E et al. , A cost-effectiveness analysis of adding a human papillomavirus vaccine to the Australian National Cervical Cancer Screening Program. Sex Health. 2007;4:165175.Google Scholar
27. Kulasingam, SL, Myers, ER. Potential health and economic impact of adding a human papillomavirus vaccine to screening programs. JAMA. 2003;290:781789.Google Scholar
28. McCrory, DC, Matchar, DB, Bastian, L et al. , Evaluation of cervical cytology. Evid Rep Technol Assess (Summ). 1999:1–6.Google Scholar
29. Meijer, CJ, Snijders, PJ, Van Den Bruel, AJ. Screening for cervical cancer: Should we test for infection with high-risk HPV? CMAJ. 2000;163:535538.Google ScholarPubMed
30. Merck Research Laboratories. Updated efficacy data: Gardasil®. Presentation to the American Advisory Committee on Immunization Practices (ACIP), National Immunization Program (NIP), from the Center for Diseases Control (CDC) (Slide show by E. Barr). Atlanta: CDC; 2007.Google Scholar
31. Munoz, N, Bosch, FX, Castellsague, X et al. , Against which human papillomavirus types shall we vaccinate and screen? The international perspective. Int J Cancer. 2004;111:278285.CrossRefGoogle ScholarPubMed
32. Myers, ER, McCrory, DC, Nanda, K, Bastian, L, Matchar, DB. Mathematical model for the natural history of human papillomavirus infection and cervical carcinogenesis. Am J Epidemiol. 2000;151:11581171.Google Scholar
33. Nanda, K, McCrory, DC, Myers, ER et al. , Accuracy of the Papanicolaou test in screening for and follow-up of cervical cytologic abnormalities: A systematic review. Ann Intern Med. 2000;132:810819.Google Scholar
34. Neilson, A, Freisleben de Blasio, B. Økonomisk evaluering av humant papillomavirus (HPV) vaksinasjon i Norge. Oslo: Nasjonalt kunnskapssenter for helsetjenesten (NOKC); 2007.Google Scholar
35. Newall, AT, Beutels, P, Wood, JG, Edmunds, WJ, MacIntyre, CR. Cost-effectiveness analyses of human papillomavirus vaccination. Lancet Infect Dis. 2007;7:289296.CrossRefGoogle ScholarPubMed
36. Sanders, GD, Taira, AV. Cost-effectiveness of a potential vaccine for human papillomavirus. Emerg Infect Dis. 2003;9:3748.Google Scholar
37. Sigurdsson, K, Taddeo, F, Benediktsdottir, K et al. , HPV genotypes in CIN 2–3 lesions and cervical cancer: A population-based study. Int J Cancer. 2007;121:26822687.Google Scholar
38. Smith, JS, Lindsay, L, Hoots, B et al. , Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: A meta-analysis update. Int J Cancer. 2007;121:621632.Google Scholar
39. Stoykova, B. HPV testing matters—Findings from a time trade-off survey in England. Copenhagen: iHEA World Conference; 2007.Google Scholar
40. Taira, AV, Neukermans, CP, Sanders, GD. Evaluating human papillomavirus vaccination programs. Emerg Infect Dis. 2004;10:19151923.CrossRefGoogle ScholarPubMed
41. Thiry, N, Lambert, ML, Cleemput, I et al. , HPV Vaccination for the prevention of cervical cancer in Belgium: Health technology assessment. Brussels: Belgian Health Care Knowledge Centre (KCE); 2007.Google Scholar
42. Van Damme, P, Theeten, H, Hoppenbrouwers, K et al. , Studie van de vaccinatiegraad bij jonge kinderen en adolescenten in Vlaanderen in 2005. Brussels: Ministerie van de Vlaamse Gemeenschap. Departement Welzijn, Volksgezondheid en Cultuur Administratie Gezondheidszorg; 2006:87.Google Scholar
43. van Eycken, L, De Wever, N. Cancer incidence and survival in Flandres, 2000–2001. Brussels: Flemish Cancer Registry Network, VLK; 2006.Google Scholar
44. van Oortmarssen, GJ, Habbema, JD, van Ballegooijen, M. Predicting mortality from cervical cancer after negative smear test results. BMJ. 1992;305:449451.Google Scholar
45. Villa, LL, Costa, RLR, Petta, CA et al. , High sustained efficacy of a prophylactic quadrivalent human papillomavirus types 6/11/16/18 L1 virus-like particle vaccine through 5 years of follow-up. Br J Cancer. 2006;95:14591466.Google Scholar
46. Woodman, CBJ, Collins, SI, Young, LS. The natural history of cervical HPV infection: Unresolved issues. Nat Rev Cancer. 2007;7:1122.Google Scholar
Supplementary material: File

Thiry supplementary materials

Supplementary tables

Download Thiry supplementary materials(File)
File 164.4 KB