Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-24T05:13:55.571Z Has data issue: false hasContentIssue false

Etiology and Pathophysiology of Postasphyxial Brain Damage

Published online by Cambridge University Press:  10 March 2009

Ingemar Kjellmer
Affiliation:
Gothenburg University

Extract

In spite of major developments in prenatal supervision, perinatal asphyxia remains an important reason for the development of brain damage (18). Epidemiological investigations suggest that perinatal asphyxia actually represents a factor of increasing frequency as a cause of severe cerebral injury (9).

Type
Neonatal Disorders of the Central Nervous System
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ames, A. III., & Gurian, B. S.Effect of glucose deprivation on function of isolated mammalian retina. Journal of Neurophysiology, 1963, 26, 617–34.CrossRefGoogle ScholarPubMed
2.Andiné, P., Lehmann, A., Ellrén, K., Wennberg, E., Kjellmer, I., & Hagberg, H.The excitatory amino acid antagonist kynurenic acid administered after hypoxic-ischemia in neonatal rats offers neuroprotection. Neuroscience Letters, 1988, 90, 208–12.CrossRefGoogle ScholarPubMed
3.Bircher, N. G., & Safar, P.Cerebral preservation during cardiopulmonary resuscitation (CPR) in dogs. Anesthesiology, 1983, 59, A93.Google Scholar
4.Blomstrand, S., Hrbek, A., Karlsson, K., Kjellmer, I., Lindecrantz, K., & Olsson, T.Does glucose administration affect the cerebral response to fetal asphyxia? Acta Obstetrica Gynaecologica Scandinavica, 1984, 63, 345–53.CrossRefGoogle ScholarPubMed
5.Cerchiari, E. L., Hoel, T. M.Safar, P., & Sclabassi, R. J.Protective effects of combined superoxide dismutase and deferoxamine on recovery of cerebral blood flow and function after cardiac arrest in dogs. Stroke, 1987, 18, 869–78.CrossRefGoogle ScholarPubMed
6.Chan, P. H., & Fishman, R. A.Transient formation of superoxide radicals in poly-unsaturated fatty acid induces brain swelling. Journal of Neurochemistry, 1978, 35, 1004–07.CrossRefGoogle Scholar
7.Gaudet, R. L., & Levine, L.Transient cerebral ischemia and brain prostaglandins. Biochemica and Biophysical Research Communications, 1979, 86, 893901.CrossRefGoogle ScholarPubMed
8.Greenamyre, T., Penney, J. B., Young, A. B., Hudson, C., Silverstein, F. S., & Johnston, M. V.Evidence for transient perinatal glutamatergic innervation of globus pallidus. Journal of Neuroscience, 1987, 7, 1022–30.CrossRefGoogle ScholarPubMed
9.Hagberg, B., & Hagberg, G. Epidemiology of cerebral palsy and other major neurodevelopmental impairment relation to perinatal events. In Galjuard, et al. (eds.), Early detection and management of cerebral palsy. Martinius Nijhoff, 1987, 723.CrossRefGoogle Scholar
10.Hagberg, H., Lehmann, A., Sandberg, M., Nystrbm, B., Jacobson, I., & Hamberger, A.Ischaemia-induced shift of inhibitory and excitatory amino acids from intra- to extracellular compartments. Journal of Cerebral Blood Flow and Metabolism, 1985, 5, 413–19.CrossRefGoogle Scholar
11.Hagberg, H., Andersson, P., Kjellmer, I., Thiringer, K., & Thordstein, M.Extracellular overflow of glutamate, aspartate, GABA and taurine during hypoxia-ischemia. Neuroscience Letters, 1987, 78, 311–17.CrossRefGoogle ScholarPubMed
12.Hallenbeck, J. M., & Furlow, T. W.Prostaglandin 12 and indomethacin prevent impairment of post-ischaemic brain reperfusion in the dog. Stroke, 1979, 10, 629–37.CrossRefGoogle Scholar
13.Hoffmeister, F., Kazda, S., & Krause, H. P.Influence of nimodipine on the post-ischaemic changes of brain function. Acta Neurologica Scandinavica, 1979, 60 (suppl. 72), 358–59.Google Scholar
14.Hossman, K. A., & Kleihues, P.Reversibility of ischaemic brain damage. Archives of Neurology, 1973, 29, 375–84.CrossRefGoogle Scholar
15.Jorgensen, M. B., & Diemer, N.-H. Selective neurone loss after cerebral ischaemia in the rat: possible role of transmitter glutamate. Acta Neurologica Scandinavica, 1982, 66.CrossRefGoogle Scholar
16.McCord, J. M.Oxygen-derived free radicals in post ischaemic injury. New England Journal of Medicine, 1985, 312, 159–63.Google Scholar
17.Myers, R. A., & Yamaguchi, M.Effects of serum glucose concentrations on brain response to circulatory arrest. Journal of Neuropathology and Experimental Neurology, 1976, 35, 301.CrossRefGoogle Scholar
18.Nelson, K. B., & Ellenberg, J. H.Apgar scores as predictors of chronic neurologic disability. Pediatrics, 1981, 68, 3644.CrossRefGoogle ScholarPubMed
19.Nemoto, E. M., Shiu, G. K., Nemmer, J. P., & Bleyaert, A. L.Free fatty acid accumulation in the pathogenesis of cerebral ischaemic-anoxic injury. American Journal of Emergency Medicine, 1983, 1, 175–79.CrossRefGoogle Scholar
20.Raichle, M. E.The pathophysiology of brain ischaemia. Annals of Neurology, 1983, 13, 210.CrossRefGoogle Scholar
21.Rehncrona, S., Rosén, I., & Siesjö, B. K.Brain lactic acidosis and ischaemic cell damage. I. Biochemistry and neurophysiology. Journal of Cerebral Blood Flow and Metabolism, 1981, 1, 297311.CrossRefGoogle ScholarPubMed
22.Safar, P.Cerebral resuscitation after cardiac arrest. Circulation, 1986, 74, 138–53.Google ScholarPubMed
23.Saugstad, O. D.Hypoxanthine as an indicator of hypoxia: Its role in health and disease through free radical production. Pediatric Research, 1988, 23, 143–50.CrossRefGoogle ScholarPubMed
24.Siesjö, B. K.Cell damage in the brain: a speculative synthesis. Journal of Cerebral Blood Flow and Metabolism, 1981, 1, 155–85.CrossRefGoogle Scholar
25.Silverstein, F. S., Chen, R., & Johnston, M. V.The glutamate analogue quisqualic acid is neurotoxic in striatum and hippocampus of immature rat brain. Neuroscience Letters, 1986, 71, 1318.CrossRefGoogle ScholarPubMed
26.Thiringer, K., Hrbek, A., Karlsson, K., Rosén, K. G., & Kjellmer, I.Postasphyxial cerebral survival in newborn sheep after treatment with oxygen free radical scavengers and a calcium antagonist. Pediatric Research, 1987, 22, 6266.CrossRefGoogle Scholar
27.Vykocil, F., Kritz, N., & Bures, J.Potassium selective microelectrodes used for measuring the extracellular brain KE during spreading depression and anoxic depolarization in rats. Brain Research, 1972, 39, 255–59.Google Scholar
28.White, B. C., Winegar, C. D., Wilson, R. F., & Krause, G. S.Calcium blockers in cerebral resuscitation. Journal of Trauma, 1983, 23, 788–93.CrossRefGoogle ScholarPubMed
29.White, B. C., Wiegenstein, J. G., & Winegar, C. D.Brain ischaemic anoxia: Mechanism of injury. Journal of the American Medical Association, 1984, 251, 1586–90.CrossRefGoogle Scholar