Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-15T16:24:24.872Z Has data issue: false hasContentIssue false

Pathophysiology of Neonatal Lung Injury

Published online by Cambridge University Press:  10 March 2009

Richard D. Bland
Affiliation:
University of California, San Francisco

Extract

Respiratory distress in newborn and young infants often develops as a result of acute lung injury, in which disruption of the normal barrier function of the pulmonary endothelium and epithelium causes protein-rich interstitial and alveolar edema. Several conditions may initiate acute lung injury, including aspiration of meconium or gastric contents, bacterial or viral infection, overzealous resuscitation, and birth associated with incomplete lung development that requires ventilatory support with positivepressure mechanical ventilation and high concentrations of inspired oxygen. The latter condition usually occurs after premature birth, but it also may occur as a consequence of impaired fetal lung growth secondary to diaphragmatic hernia or chest compression from lack of liquid in the amniotic cavity. Acute lung injury sometimes progresses to a chronic form of lung disease, which is characterized by edema, fibrosis, airway distortion, and nonuniform inflation of the lungs.

Type
Neonatal Disorders of Respiration
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Avery, M. E., & Mead, J.Surface properties in relation to atelectasis and hyaline membrane disease. American Journal of Diseases of Children, 1959, 97, 517–23.Google ScholarPubMed
2.Avery, G. B., Fletcher, A. B., Kaplan, M., & Brudno, D. S.Controlled trial of dexamethasone in respirator-dependent infants with bronchopulmonary dysplasia. Pediatrics, 1985, 75, 106–11.CrossRefGoogle ScholarPubMed
3.Bancalari, E., & Gerhardt, T.Bronchopulmonary dysplasia. Pediatric Clinics of North America, 1986, 33, 123.CrossRefGoogle ScholarPubMed
4.Bland, R. D.Cord-blood total protein level as a screening aid for the idiopathic respiratory-distress syndrome. New England Journal of Medicine, 1972, 287, 913.CrossRefGoogle ScholarPubMed
5.Bland, R. D., & Bressack, M. A.Lung fluid balance in awake newborn lambs with pulmonary edema from rapid intravenous infusion of isotonic saline. Pediatric Research, 1979, 13, 1037–42.CrossRefGoogle ScholarPubMed
6.Bland, R. D.Pathogenesis of pulmonary edema after premature birth. Advances in Pediatrics, 1987, 34, 175222.CrossRefGoogle ScholarPubMed
7.Bressack, M. A., McMillan, D. D., & Bland, R. D.Pulmonary oxygen toxicity: Increased microvascular permeability to protein in unanesthetized lambs. Lymphology, 1979, 12, 133–39.Google ScholarPubMed
8.Bressack, M. A., & Bland, R. D.Alveolar hypoxia increases lung fluid filtration in unanesthetized newborn lambs. Circulation Research, 1980, 46, 111–16.CrossRefGoogle ScholarPubMed
9.Carlton, D. P., Scheerer, R. G., Cummings, J. J., & Bland, R. D.Lung overexpansion injures the pulmonary microcirculation in lambs. Pediatric Research, 1988, 23, 500A.Google Scholar
10.deSa, D. J.Pulmonary fluid content in infants with respiratory distress. Journal of Pathology, 1969, 97, 469–79.CrossRefGoogle ScholarPubMed
11.Elkady, T., & Jobe, A.Corticosteroids and surfactant increase lung volumes and decrease rupture pressures of preterm rabbit lungs. Journal of Applied Physiology, 1987, 63, 1616–21.CrossRefGoogle ScholarPubMed
12.Farrell, P. M., & Taussig, L. M. (editors). Bronchopulmonary dysplasia and related chronic respiratory disorders. 19th Ross Conference on Pediatric Research. Columbus, OH: Ross Laboratories, 1986, 1150.Google Scholar
13.Flick, M. R., Milligan, S. A., Hoeffel, J. M., & Goldstein, I. M.Catalase prevents increased lung vascular permeability during air emboli in unanesthetized sheep. Journal of Applied Physiology, 1988, 64, 929–35.CrossRefGoogle ScholarPubMed
14.Frank, L.Effects of oxygen on the newborn. Federation Proceedings, 1985, 44, 2328–34.Google ScholarPubMed
15.Frank, L., & Sosenko, I. R. S.Prenatal development of lung antioxidant enzymes in four species. The Journal of Pediatrics, 1987, 110, 106–10.CrossRefGoogle ScholarPubMed
16.Gandy, G., Jacobson, W., & Gairdner, D.Hyaline membrane disease. I. Cellular changes. Archives of Disease in Childhood, 1970, 45, 289310.CrossRefGoogle ScholarPubMed
17.Hazinski, T. A., Bland, R. D., Hansen, T. N., Sedin, E. G., & Goldberg, R. B.Effect of hypoproteinemia on lung fluid balance in awake newborn lambs. Journal of Applied Physiology, 1986, 61, 1139–48.CrossRefGoogle ScholarPubMed
18.Ikegami, M., Berry, D., Elkady, T., Pettenazzo, A., Seidner, S., & Jobe, A.Corticosteroids and surfactant change lung function and protein leaks in the lungs of ventilated premature rabbits. Journal of Clinical Investigation, 1987, 79, 1371–78.CrossRefGoogle ScholarPubMed
19.Ikegami, M., Jobe, A. H., Pettenazzo, A., Seidner, S. R., Berry, D. D., & Ruffini, L.Effects of maternal treatment with corticosteroids, T3, TRH, and their combinations on lung function of ventilated preterm rabbits with and without surfactant treatments. American Review of Respiratory Disease, 1987, 136, 892–98.CrossRefGoogle ScholarPubMed
20.Jobe, A., Ikegami, M., Jacobs, H., Jones, S., & Conaway, D.Permeability of premature lamb lungs to protein and the effect of surfactant on that permeability. Journal of Applied Physiology, 1983, 55, 169–76.CrossRefGoogle ScholarPubMed
21.Jobe, A., Jacobs, H., Ikegami, M., & Berry, D.Lung protein leaks in ventilated lambs: Effect on gestational age. Journal of Applied Physiology, 1985, 58, 1246–51.CrossRefGoogle ScholarPubMed
22.Johnson, D. E., Lock, J. E., Elde, R. P., & Thompson, T. R.Pulmonary neuroendocrine cells in hyaline membrane disease and bronchopulmonary dysplasia. Pediatric Research, 1982, 16, 446–54.CrossRefGoogle ScholarPubMed
23.Laine, G. A., Allen, S. J., Katz, J., Gabel, J. C., & Drake, R. E.Effect of systemic venous pressure elevation on lymph flow and lung edema formation. Journal of Applied Physiology, 1986, 61, 1634–38.CrossRefGoogle ScholarPubMed
24.Lauweryns, J. M.Hyaline membrane disease: a pathological study of 55 infants. Archives of Disease in Childhood, 1965, 40, 618–25.CrossRefGoogle ScholarPubMed
25.Mammel, M. C., Green, T. P., Johnson, D. E., & Thompson, T. R.Controlled trial of dexamethasone therapy in infants with bronchopulmonary dysplasia. Lancet, 1983, i, 1356–58.CrossRefGoogle Scholar
26.Matalon, S., & Egan, E. A.Effects of 100% O2 breathing on permeability of alveolar epithelium to solute. Journal of Applied Physiology, 1981, 50, 859–63.CrossRefGoogle ScholarPubMed
27.Merritt, T. A., Cochrane, C. G., Holcomb, K., Bohl, B., Hallman, M., Strayer, D., Edwards, D. K., Ill, & Gluck, L.Elastase and alpha 1-proteinase inhibitor activity in tracheal aspirates during respiratory distress syndrome. Journal of Clinical Investigation, 1983, 72, 656–66.CrossRefGoogle ScholarPubMed
28.Milligan, S. A., Hoeffel, J. M., Goldstein, I. M., & Flick, M. R.Effect of catalase on endotoxin-induced acute lung injury in unanesthetized sheep. American Review of Respiratory Disease, 1988, 137, 420–28.CrossRefGoogle ScholarPubMed
29.Nilsson, R., Grossmann, G., & Robertson, B.Lung surfactant and the pathogenesis of neonatal bronchiolar lesions induced by artificial ventilation. Pediatric Research, 1978, 12, 249–55.CrossRefGoogle ScholarPubMed
30.Nilsson, R., Grossmann, G., & Robertson, B.Pathogenesis of neonatal lung lesions induced by artificial ventilation: Evidence against the role of barotrauma. Respiration, 1980, 40, 218–25.CrossRefGoogle ScholarPubMed
31.Northway, W. H. Jr., Rosan, R. C., & Porter, D. Y.Pulmonary disease following respirator therapy of hyaline-membrane disease. New England Journal of Medicine, 1967, 276, 357–68.CrossRefGoogle ScholarPubMed
32.O’Brodovich, H. M., & Mellins, R. B.Bronchopulmonary dysplasia. Unresolved neonatal acute lung injury. American Review of Respiratory Disease, 1985, 132, 694709.Google ScholarPubMed
33.Ogden, B. E., Murphy, S. A., Saunders, G. C., Pathak, D., & Johnson, S. D.Neonatal lung neutrophils and elastase/proteinase inhibitor imbalance. American Review of Respiratory Disease, 1984, 130, 817–21.Google ScholarPubMed
34.Rosenfeld, W., Evans, H., Concepcion, L., Jhaveri, R., Schaeffer, H., & Friedman, A.Prevention of bronchopulmonary dysplasia by administration of bovine superoxide dismutase in preterm infants with respiratory distress syndrome. Journal of Pediatrics, 1984, 105, 781–85.CrossRefGoogle ScholarPubMed
35.Saugstad, O. D.Oxygen radicals and pulmonary damage. Pediatric Pulmonology, 1985, 1, 167–75.CrossRefGoogle ScholarPubMed
36.Shenai, J. P., Kennedy, K. A., Chytil, F., & Stahlman, M. T.Clinical trial of vitamin A supplementation in infants susceptible to bronchopulmonary dysplasia. Journal of Pediatrics, 1987, 111, 269–77.CrossRefGoogle ScholarPubMed
37.Sundell, H. W., Harris, T. R., Cannon, J. R., Lindstrom, D. P., Green, R., Rojas, J., & Brigham, K. L.Lung water and vascular permeability-surface area in premature newborn lambs with hyaline membrane disease. Circulation Research, 1987, 60, 923–32.CrossRefGoogle ScholarPubMed
38.Tanswell, A. K., & Freeman, B. A.Liposome-entrapped antioxidant enzymes prevent lethal O2 toxicity in the newborn rat. Journal of Applied Physiology, 1987, 63, 347–52.CrossRefGoogle ScholarPubMed
39.Teague, W. G. Jr., Raj, J. U., Braun, D., Berner, M. E., Clyman, R. I., & Bland, R. D.Lung vascular effects of lipid infusion in awake lambs. Pediatric Research, 1987, 22, 714–19.CrossRefGoogle ScholarPubMed