Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-15T04:20:01.209Z Has data issue: false hasContentIssue false

Safety Aspects of Magnetic Resonance Examinations

Published online by Cambridge University Press:  10 March 2009

Bertil R. R. Persson
Affiliation:
Department of Radiation PhysicsUniversity of Lund
Freddy Ståhlberg
Affiliation:
Department of Radiation PhysicsUniversity of Lund

Extract

In a standard whole-body NMR-scanning machine, the static magnetic field is generated by an electric current driven through large solenoid coils. Dynamic magnetic gradient fields are generated by electric current pulses in coils located at various orientations, thus producing magnetic gradients in x, y, and z directions. The Rf (radiofrequency) radiation is transmitted through a specially shaped coil which also serves as an antenna receiving the NMR signals.

Type
An International View of Magnetic Resonance—Imaging and Spectroscopy
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Aleksandrovskaya, M. M., & Kholodov, Yu. A. The reactions of brain neuroglia to exposure to a constant magnetic field. In Questions of Hematology, Radiobiology and the Biological Actions of Magnetic Fields. Tomsk, 1965.Google Scholar
2.Barlow, H. B., Kohn, H. I., & Walsh, E. G.The effect of dark adaption and of light upon the electric threshold of the human eye. Journal of Physiology, 1947, 148, 376–81.Google ScholarPubMed
3.Barnothy, M. F., & Barnothy, J. M.Magnetic field and the number of blood platelets. Nature, 1970, 225, 1146.CrossRefGoogle ScholarPubMed
4.Barnothy, M. F., & Sumegi, I. Effects of the magnetic field on internal organs and the endocrine system of mice. In Barnothy, M. F., (ed.), Biological Effects of Magnetic Fields, vol. 2. New York: Plenum Press, 1969, 103–26.CrossRefGoogle Scholar
5.Beischer, D. E.Human tolerance to magnetic fields. Astronautics, 1962, 7, 2448.Google Scholar
6.Beischer, D. E. Survival of animals in magnetic fields of 140,000 Oe. In Barnothy, M. F., (ed.), Biological Effects of Magnetic Fields, Vol. 1. New York: Plenum Press, 1964.Google Scholar
7.Beischer, D. E. Vectorcardiogram and aortic blood flow of Squirrel monkeys (Saimire sciureus) in a strong superconductive magnet. In Barnothy, M. F., (ed.), Biological Effects of Magnetic Fields, Vol. 2. New York: Plenum Press, 1969, 241–59.CrossRefGoogle Scholar
8.Beischer, D. E., & Knepton, J. C.Influence of strong magnetic fields on the electrocardiogram of squirrel monkeys. Journal of Aerospace Medicine, 1964, 35, 939.Google ScholarPubMed
9.Beischer, D. E., & Reno, V. R. Magnetic fields and man: Where do we stand today. In Pfister, A. M., (ed.), AGARD Conference Proceedings N.95, Part III; Special Biophysical Problems in Aerospace Medicine. Medical Panel Specialist Meeting, Luchon, France.Google Scholar
10.Berman, E., Carter, H. B., & House, D.Tests of mutagenesis and reproduction in male rats exposed to 2450-MHz (CW) microwaves. Bioelectromagnetics, 1980, 1, 6576.CrossRefGoogle Scholar
11.Berman, E., Kinn, J. B., & Carter, H. B.Observations of mouse fetuses after irradiation with 2.45 GHz microwaves. Health Physics, 1978, 35, 791801.CrossRefGoogle ScholarPubMed
12.BGA Bundesgesundheitsamt. Empfehlungen zur Vermeidung gesundheitlicher Risiken verursacht durch magnetisch und hoch frequente elektromagnetische Felder bei der NMR-tomographie und in-vivo NMR spectroskopie. Carl Heymanns Verlag, Bonn, Bundesgesundheitsblatter, 1984, 27(3), 9296.Google Scholar
13.Blackman, C. F., Surles, M. C., & Benane, S. G. The effect of microwave exposure on bacteria: Mutation induction. In Johnson, C. C. & Shore, M. L., (eds.), Biological Effects of Electromagnetic Waves, Voll. HEW Publ (FDA) 77–8010, Rockville, Maryland. 1976, 406–13.Google Scholar
14.Bore, P. J., & Tinms, W. E.The installation of high field NMR equipment in a hospital environment. Magnetic Resonance Imaging, 1984, 1, 387–95.Google Scholar
15.Bottomley, P. A.Rf-deposition in NMR imaging. In Proceedings of the 3rd Annual Meeting, Society of Magnetic Resonance in Medicine, 1984, 6364.Google Scholar
16.Bottomley, P. A., & Andrew, E. R.Rf magnetic field penetration, phase shift and power dissipation in biological tissue: Implications for NMR imaging. Physical Medicine and Biology, 1978, 23, 630–43.CrossRefGoogle ScholarPubMed
17.Bottomley, P. A., & Edelstein, W. A.Power deposition in whole-body NMR imaging. Medical Physics, 1981, 8, 510–12.CrossRefGoogle ScholarPubMed
18.BRH, FDA Bureau of Radiological Health, Food and Drug Administration: Guidelines for Evaluating Electromagnetic Risk for Trials of Clinical NMR Systems. Rockville, Md: FDA, 1982, HFX–460.Google Scholar
19.Brighton, C. T. (ed.). Electric and magnetic control of musculo-skeletal growth and repair. New York: Grune & Stratton, 1979.Google Scholar
20.Brown, F. A. Jr, Effects and after-effects on planarians of reversals of the horizontal magnetic vector. Nature, 1966, 209, 533.CrossRefGoogle ScholarPubMed
21.Budinger, T. F.Thresholds for physiological effects due to Rf and magnetic fields in NMR imaging. IEEE Transactions of Nuclear Science, NS-26, 2821–25.Google Scholar
22.Budinger, T. F.Nuclear magnetic resonance (NMR) in vivo studies: Known thresholds for health effects. Journal of Computer Assisted Tomography, 5, 800–11.CrossRefGoogle Scholar
23.Budinger, T. F., Bristol, K. S., Yen, C. K., & Wong, P.Biological effects of static magnetic fields. In Proceedings of the 3rd Annual Meeting of the Society Magnetic Resonance in Medicine, 1984, 113–14.Google Scholar
24.Budinger, T. F., Cullander, C., & Bordow, R.Switched magnetic field threshold for the induction of magneto-phosphenes. In Proceedings of the 3rd Annual Meeting Society Magnetic Resonance in Medicine, 1984b, 118–19.Google Scholar
25.Chernovetz, M. E., Justesen, D. R., & Oke, A. F.A teratological study of the rat: Microwave and infrared radiation compared. Radiological Science, 1977, 12(65), 191–97.Google Scholar
26.Cooke, P., & Morris, P. G.The effects of NMR exposure on living organisms. II. A genetic study of human lymphocytes. British Journal of Radiology, 1981, 54, 622–25.CrossRefGoogle Scholar
27.D'Arsonval, M. A.Action physiologique des courants alternatifs a grande frequence. Archives de Physiologie, 1893, 5, 401–08.Google Scholar
28.Davis, P. L., Crooks, L., Arakawa, M., McRee, R., Kaufman, L., & Margulis, A. R.Potential hazards in NMR imaging: Heating effects of changing magnetic fields and Rf fields on small metallic implants. American Journal of Radiology, 1981, 137, 857–60.Google ScholarPubMed
29.Delgado, J. M. R., Leal, J., Monteagudo, J. L. et al. , Embryological changes induced by weak, extremely low frequency electromagnetic fields. Journal of Anatomy, 1982, 134, 533–51.Google ScholarPubMed
30.Djordjevic, Z., Lazarevic, N., & Djorkovic, V.Studies on the hematologic effects of long–term, low-dose microwave exposure. Aviation, Space, and Environmental Medicine, 1977, 48, 516–18.Google ScholarPubMed
31.Dujovny, M., Kossovsky, N., Kossovsky, R., Diaz, F. G., & Ausman, J. I.Magnetic aneurysm clips, correlation with martensite content and implications for nuclear magnetic resonance examination. American College of Surgeons, Surgical Forum, 1983a, 34, 525–27.Google Scholar
32.Dujovny, M., Kossovsky, N., Kossowsky, R., Perlin, A., Gatti, E. F., Segal, R., & Diaz, F. G.Mechanical and metallurgical properties of vascular clips designed for temporary use. Miscrosurgery, 1983b, 4, 124–33.CrossRefGoogle ScholarPubMed
33.Einstein, S. G., Maudsley, A. A., Mun, S. K., Simon, H. E., Hilal, S. K., Sano, R. M., Roeschman, P. Installation of high field NMR systems into existing clinical facilities: special consideration. In Esser, P. D. & Johnston, R. E., (eds.), Technology of Nuclear Magnetic Resonance, New York: Society of Nuclear Medicine, 1984, 217–31.Google Scholar
34.Fink, M.Convulsive Therapy: Theory and practice. New York: Raven Press, 1979.Google Scholar
35.Guillet, R., & Michaelson, S. M.The effects of repeated microwave exposure on neonatal rats. Radiologic Science, 1977, 12, 659, 125–29.Google Scholar
36.Hanneman, G. D.Changes produced in urinary sodium, potassium, and calcium excretion in mice exposed to homogeneous electromagnetic field. Aerospace Medicine, 1967, 38, 275.Google Scholar
37.Hanneman, G. D. Changes in sodium and potassium content of urine from mice sub jected to intense magnetic fields. In Barnothy, F., (ed.), Biological Effects of Magnetic Fields, vol. 2. New York: Plenum Press, 1969.Google Scholar
38.Hansson-Mild, K., Sandstrom, M., Lovtrup, S., Development of Xenopus laevis embryos in a static magnetic field. Biomagnetics, 1981, 2, 199201.Google Scholar
39.Ismaliov, E. Sh.Mechanism of effects of microwaves on erytrocyte permeability for potassium and sodium ions. Biologicheskii Nauki 1971, 3, 5860 (English trans: JPRS 72606, Jan 12, 1979, pp 38–41).Google Scholar
40.Ismaliov, E. Sh.Infrared spectra of erythrocyte ghosts in the region of the Amide I and Amide II bands on microwave irradiation, (translation of Biofnika 21, 940–42, 1976) Biophysics, 1977, 21, 961–63.Google Scholar
41.Ismaliov, E. Sh.Effect of ultrahigh frequency electromagnetic radiation on the electrophoretic mobility of erythrocytes. (translation of Biofizika 22, 493–98, 1977) Biophysics, 1978, 22, 510–16.Google Scholar
42.Johnson, R. B., Mizumori, S., & Lovely, R. H. Adult behavioral deficit in rats exposed prenatally to 918-MHz microwaves. In Mahlum, D. D., Sikov, M. R., Hacket, P. L., & Andrew, F. D. (eds.), Developmental toxicology of energy related pollutants. DOE Symposium Series 47, Washington DC. 1978, 281–99.Google Scholar
43.Keeton, W. T.The mystery of pigeon homing. Scientific American, 1974, 231, 96.CrossRefGoogle ScholarPubMed
44.Ketchen, E. E., Porter, W. E., & Bolton, N. E.The biological effects of magnetic fields on man. Journal of the American Industrial Hygiene Association, 1978, 39, 111.CrossRefGoogle ScholarPubMed
45.Kholodov, JuA., Alexandrovskaya, M. M., Lukjanova, S. N., & Udarova, N. S. Investigation of the reactions of mammalian brain to static magnetic fields. In Barnothy, M. F., (ed.), Biological Effects of Magnetic Fields, vol. 2. New York: Plenum Press, 1969, 215.CrossRefGoogle Scholar
46.Kim, Y. S.Some possible effects of static magnetic fields on cancer. TIT Journal of Life Science, 1976, 6, 1128.Google Scholar
47.Kitsovskaya, I. A.The effect of centimeter waves of different intensities on the blood and hemopoetic organs of white rats. Gigeena Truda ProfZabolev, 1964, 8, 1425.Google Scholar
48.Lidbury, R. P.Effects of radiofrequency radiation on inflammation. Radiologic Science, 1977, 12(6S), 179–83.Google Scholar
49.Lovely, R. H., Myers, D. E., & Guy, A. W.Irradiation of rats by 918-MHz microwaves at 2.5 mW/cm2: Delineation of the dose-response relationship. Radiologic Science, 1977, 12(6S), 139–46.Google Scholar
50.Lövsund, P., & Hansson-Mild, K. Low frequency electromagnetic fields near some nduction heaters. Investigative Reports, 1978, 38, National Board of Occupational Safety and Health, Sweden, 1978.Google Scholar
51.Lövsund, P., Nilsson, S. E. G., Reuther, T., & Öberg, P. Å., Magnetophosphenes. A quantitative analysis of thresholds. Medical Biology Engineering Computers, 1980, 18, 326–34.CrossRefGoogle ScholarPubMed
52.Markuze, I. I., Ambartsumyan, R. G., Chibrikin, V. M., & Piruzyan, L. A.Investigation of the PMP action on the alteration of electrolyte concentration in the blood and organs of animals. Izv Akad Nauk SSSR, Ser Biol, 1973, 2, 281.Google Scholar
53.Marsch, M., Armstrong, T. J., Jacobsen, A. P. et al. , Health effects of occupational exposure to static magnetic fields. American Industrial Hygiene Association Journal, 1982, 43, 387–94.CrossRefGoogle Scholar
54.Michaelson, S. M., Guillet, R., & Heggeness, F. W. Influence of microwave exposure on functional maturation of the rat. In Mahlum, D. D., Sikov, M. R., Hacket, P. L., & Andrew, F. D., (eds.), Developmental Toxicology of Energy-Related Pollutants. Department of Energy Symposium Series 47, Washington, DC. 1978, 300–16.Google Scholar
55.Milroy, W. C., & Michelson, S. M.Thyroid pathophysiology of microwave radiation. Aerospace Medicine, 1972,43, 1126–31.Google ScholarPubMed
56.Neurath, P. W. The effect of high gradient, high strength fields on the early embryonic development of frogs. In Barnothy, M. F., (ed.), Biological Effects of Magnetic Fields, vol. 2. New York: Plenum Press, 1969, 177.CrossRefGoogle Scholar
57.New, P. F. J., Rosen, B. R., Brady, T. J., Buonanno, F. S., Kistler, J. P., Burt, C. T., Hinshaw, W. S., Newhouse, J. H., Pohost, G. M., & Taveras, J. M.Potential hazards and artifacts of ferromagnetic and nonferromagnetic surgical and dental materials and devices in Nuclear Magnetic Resonance imaging. Radiology, 1983, 147, 139–48.CrossRefGoogle ScholarPubMed
58.Noble, D., & Stein, R. R.The threshold conditions for initiation of action potentials by excitable cells. Journal of Physiology, 1966, 187, 129–62.CrossRefGoogle ScholarPubMed
59.NRPB. National Radiological Protection Board (Great Britain). Exposure to nuclear magnetic resonance clinical imaging. Radiography, 1981, 47, 258–60.Google Scholar
60.NRPB. National Radiological Protection Board (Great Britain). Revised guidance on acceptable limits of exposure during nuclear magnetic resonance clinical imaging. British Journal of Radiology, 1983, 56, 974–72.Google Scholar
61.Pawlicheck, M., Mackintyre, W., Go, R., O'Donnel, J., & Feiglin, D. Special architectural considerations in designing an NMR facility. In Esser, P. D., & Johnston, R. E., Technology of Nuclear Magnetic Resonance, New York: Society of Nuclear Medicine, 1984, 233–52.Google Scholar
62.Peterson, F., Kennelly, Some physiological experiments with magnets at the Edison Laboratory. New York Medical Journal, 1892, 56, 729.Google Scholar
63.Poison, M. J. R., Barker, A. T., & Freeston, I. L.Stimulation of nerve trunks with time-varying magnetic fields. Medical Biology Engineering Computers, 1982, 20, 243–44.Google Scholar
64.Prosser, C. L. (ed.), Comparative Animal Physiology. Philadelphia: W. B. Saunders, 1973.Google Scholar
65.Ranck, J. B. Jr,, Which elements are excited in electrical stimulation of mammalian central nervous system: A review. Brain Research, 1975, 98, 417–40.CrossRefGoogle ScholarPubMed
66.Rockette, H. E., & Arena, V. C.Mortality studies of Aluminium Reduction Plant Workers: Potroom and Carbon Department. Journal of Occupational Medicine, 1983, 25, 549–57.Google ScholarPubMed
67.Roy, O. Z.Technical note: Summary of cardiac fibrillation thresholds for 60 Hz currents and voltage applied directly to the heart. Medical Biology Engineering Computers, 1980, 18, 657–59.CrossRefGoogle Scholar
68.Roy, O. Z., Park, G. C., & Stott, J. R.Intracardiac catheter fibrillation thresholds as a function of duration of 60 Hz current and electrode area. IEEE Transactions of Biomedical Engineering, BME-, 1977, 24, 430–35.CrossRefGoogle ScholarPubMed
69.Rugh, R.Are mouse fetuses which survive microwave radiation permanently affected thereby? Health Physiology, 1976, 31, 3339.CrossRefGoogle ScholarPubMed
70.Russel, D. R., & Hedrick, H. G. Preferences of mice to consume food and water in an environment of high magnetic field. In Barnothy, M. F., (ed.), Biological Effects of Magnetic Fields, vol. 1. New York: Plenum Press, 1969, 233.CrossRefGoogle Scholar
71.Saunders, R. D.Biologic effects of NMR clinical imaging. Applied Radiology, 1982, 09/10:4346.Google Scholar
72.Schwartz, J. L., & Crooks, L. E.NMR imaging produces no observable mutations or cytotoxicity in mammalian cells. American Journal of Radiology, 1982, 139, 583–85.Google ScholarPubMed
73.Smialowicz, R. J. The effect of microwaves (2450 MHz) on Lymphocyte blast trans formation in vitro. In Johnson, C. C. & Shore, M. L. (eds.), Biological Effects of Elec tromagnetic waves, vol I. HEW Publ (FDA) 77–8010, Rockville, Maryland, 1976, 472–83.Google Scholar
74.Smialowicz, R. J., Kinn, J. B., & Elder, J. A.Perinatal exposure of rats to 2450-MHz CW microwave radiation: Effects on Lymphocytes. Radiologic Science, 1979, 14, 147–53.Google Scholar
75. SSI. Radiation from video display terminals (in Swedish) Report 184–04 (p18) Staiens Stralskyddsinstitut, S–10401 Stockholm, Sweden, 1984.Google Scholar
76.Thomas, A., & Morris, P. G.The effects of NMR exposure on living organisms. (I.) A microbal assay. British Journal of Radiology, 1981, 54, 615–21.CrossRefGoogle Scholar
77.Toroptsev, I. V., & Garganeev, G. P. Morphologic characteristics of the changes in experimental animals due to continuous prolonged action of a constant magnetic field. In: Questions of Hematology, Radiobiology and the Biological Action of Magnetic Fields. Tomsk, 1965.Google Scholar
78.Tucker, R. D., & Schmitt, O. H. Tests for human perception of 60 Hz moderate strength low frequency magnetic field. Ph.D. thesis, University of Minnesota, 1976.Google Scholar
79.Vyalov, A. M. Clinico-hygienic and experimental data on the effects of magnetic fields under industrial conditions. In Kholoov, Y., (ed.), Influence of Magnetic Fields on Biological Objects. National Technical Informational Service Rept. JPRS5303S. Springfield VA, 1971.Google Scholar
80.Wangemann, R. T., & Cleary, S. F.The in vivo effects of 2.45 GHz microwave radiation on rabbit serum components and sleeping times. Radiat Environ Biophys, 1976, 13, 89103.CrossRefGoogle ScholarPubMed
81.Ward, T. R., Allis, J. W., & Elder, J. A.Measure of enzymatic activity coincident with 2450 MHz-microwave exposure. Journal of Microwave Power, 1975, 10, 315–20.CrossRefGoogle ScholarPubMed
82.Watson, A. B., Wright, J. S., & Loughman, J.Electrical thresholds for ventricular fibrillation in man. Medical Journal ofAust, 1973, 1, 1179–82.Google ScholarPubMed
83.Wolff, S., Crooks, L. E., Brown, P., Howard, R., & Painter, R. B.Test for DNA and chromosomal damage induced by Nuclear Magnetic Resonance Imaging. Radiology, 1980, 136, 707–10.CrossRefGoogle Scholar
84.Zimmermann, B. H., & Faul, D. D.Artifacts and hazards in NMR imaging due to metal implants and cardiac pacemakers. Diagnostic Imaging Clinical Medical, 1984, 53, 5356.Google ScholarPubMed