Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T12:01:02.976Z Has data issue: false hasContentIssue false

Evaluation of Insecticidal Proteins of Microbial and Plant Origin Against Insect Pests of Rice

Published online by Cambridge University Press:  19 September 2011

J. S. Bentur*
Affiliation:
Directorate of Rice Research, Rajendranagar, Hyderabad 500 030, A.P., India
N. P. Sarma
Affiliation:
Directorate of Rice Research, Rajendranagar, Hyderabad 500 030, A.P., India
Raj Bhatnagar
Affiliation:
International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
C. V. Sudha
Affiliation:
Department of Biochemistry, Andhra University, Visakhapatnam 530 003, A.P., India
D. Sivaprasad
Affiliation:
Department of Biochemistry, Andhra University, Visakhapatnam 530 003, A.P., India
*
Corresponding author: JSB. E-mail: jbentur@yahoo.com
Get access

Abstract

An artificial diet developed for the rice leaffolder, Cnaphalocrocis medinalis was used in a bioassay of endotoxin proteins from Bacillus thuringiensis (Bt) strains and plant-derived protease inhibitors against the leaffolder, C. medinalis, and the yellow stemborer, Scirpophaga incertnlas. Of the 14 samples of endotoxins derived from different strains of Bt (sub-species kurstaki and sphericus) tested, 5 samples — BT 29, BT 47, BT 61, BT 70 and HD-1— were effective against leaffolder larvae in preliminary tests. Subsequent tests indicated HD-1 to be the most effective against the leaffolder, followed by BT 61 and BT 70, with non-overlapping 95% fiducial limits of LC50 values (3.9,18.2 and 41.1 mg protein/kg diet, respectively). Mortality was observed after 48 h of release of neonate larvae. In contrast, the two protease inhibitors tested, namely soybean trypsin inhibitor (SBTI) and jackfruit seed trypsin inhibitor (JSTI) were less lethal to the two pests. The latter was more effective against the yellow stemborer at much lower concentrations.

Résumé

Un aliment artificiel mis au point pour l'élevage de la tordeuse de feuilles du riz, Cnaphalocrocis medinalis a été utilisé dans un bio-essai à l'endotoxine protéique obtenue des souches de Bacillus thuringiensis (Bt) et aux protéases inhibitrices dérivées des plantes, contre la chenille de la tordeuse C. medinalis, elle-même et celle du foreur de tiges, Scirpophaga incertulas. Des 14 échantillons de souches d'endotoxines dérivées de Bt, 5 d'entre eux (BT 29, BT 47, BT 61, BT 70 et HD-1) ont montré leur efficacité contre les larves de la tordeuse de feuilles au cours des essais préliminaires. Dans des essais subséquents, la souche HD-1 s'est révélée la plus efficace suivie de BT 61 et BT 70, avec des limites distinctes des valeurs LC50 à 95% et à des concentrations respectives (mg protéine/ kg d'aliment) de 3,9 mg pour HD-1, de 18,2 mg pour BT 61 et de 41 mg pour BT 70. Chez les larves néonates, la mortalité survenait 48 après leur introduction sur le milieu alimentaire. Par contre, les deux protéases inhibitrices testées c-à-d la trypsine inhibitrice obtenue la soja et celle obtenue du jaquier étaient plus létales pour les deux ravageurs. Le dernier produit était aussi très efficace contre S. incertulas, même à des très basses concentrations.

Type
Research Articles
Copyright
Copyright © ICIPE 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Annapurna, S. S. and Siva Prasad, D. (1991) Purification of a trypsin/chymotrypsin inhibitor from jack fruit seeds, J. Sci. Food Agrie. 54, 399411.CrossRefGoogle Scholar
Aronson, A. I., Angelo, A. and Holt, S. C. (1971) Regulation of extracellular protease production in Bacillus ceras T: Characterization of mutants producing altered amounts of protease. J. Bacteriology 106, 10161025.CrossRefGoogle Scholar
Bentur, J. S. and Kalode, M. B. (1990) A feeding test to identify rice varieties resistant to the leaffolder, Ciiaplialocrocis inedinalis (Guenée). Proc. Indian Acad. Sci. (Anim. Sci.) 99, 483491.CrossRefGoogle Scholar
Bolter, C. and Jongsma, M. (1995) Colarado potato beetle (Leptinotarsa deccinlineata) adapt to proteinase inhibitors induced in potato leaves by methyl jasmonate. J. Insect Plnjsiol. 41, 10711078.CrossRefGoogle Scholar
Broadway, R. M. and Duffey, S. S. (1986) Plant proteinase inhibitors: Mechanism of action and effect on the growth and digestive physiology of larval Hcliothis zea and Spodoptera exigua. J. insect Plnjsiol. 32, 827833.CrossRefGoogle Scholar
Cheng, X., Sardana, S., Kaplan, H. and Altosaar 1. (1998) Agrobactcr'nim-trans?ormeà rice plants expressing synthetic crylA(c) genes are highly toxic to striped stem borer and yellow stem borer. Proc. Nati. Acad. Sci. USA 95, 27672772.CrossRefGoogle Scholar
Dakshayani, K., Bentur, J. S. and Kalode, M. ?. (1988) A meridie diet for rice leaffolder, Ciiaplialocrocis inedinalis (Guenée). Entomon 13, 309311.Google Scholar
Dakshayani, K., Bentur, J. S. and Kalode, M. B. (1993) Nature of resistance in rice varieties against leaffolder Ciiaplialocrocis inedinalis (Gueneé). Insect Sci. Applic. 14, 107114.Google Scholar
Duan, X., Li, X., Xuc, Q., Abo-El-Saad, , Xu, D. and Wu, R. (1996) Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant. Nature Biotechnology 14, 494498.CrossRefGoogle ScholarPubMed
Dulmage, H. T., Correa, J. A. and Martinez, A. J. (1970) Co-precipitation with lactose as a means of recovering the spore crystal complex of Bacillus thnringiensis. J. Invertebr. Patkol. 15, 520.Google Scholar
Finney, D. J. (1971) Probit Analysis. Cambridge University Press, London, 3rd Edition. 133 pp.Google Scholar
Fujimoto, H., Itoh, K., Yamamoto, M., Kyozuka, J. and Shimamoto, K. (1993) Insect resistant rice generated by modified delta endotoxin gene of Bacillus thnringiensis. Bio/Technology 11, 11511155.Google Scholar
Ghareyazie, B., Alinia, F., Menguito, C. A., Rubia, L. G., dePamla, J. M., Liwang, E. A., Cohen, M. B., Khush, G. S. and Bennett, J. (1997) Enhanced resistance to two stemborers in an aromatic rice containing a synthetic crylA(b) gene. Mol. Breeding 3, 401414.CrossRefGoogle Scholar
[ICGEB] International Centre for Genetic Engineering and Biotechnology (1997) Activity Report 1996. Trieste, Italy. 158 pp.Google Scholar
Irie, K., Hoyoyama, H., Takeuchi, T., Iwabuchi, K., Watanabe, H., Abe, M., Abe, K. and Arai, S. (1996) Transgenic rice established to express corn cystatin exhibits strong inhibitory activity against insect gut proteases. Plant Mol. Biology 30, 149157.CrossRefGoogle Scholar
James, C. (1997) Global status of transgenic crops in 1997. ISAAA Briefs No. 5, 30 pp. International Service for Acquisition of Agro-Biotech Applications, Ithaca, N.Y.Google Scholar
Jongsma, M. A., Bakker, P. L., Peters, J., Bosch, D. and Stiekema, W. J. (1995) Adaptation of Spodoptera exigua larvae to plant proteinase inhibitors by induction of gut proteinase activity insensitive to inhibition. Proc. Nati. Acad. Sci. USA 92, 80418045.CrossRefGoogle ScholarPubMed
Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) Protein measurement with folin phenol reagent, J. Biol Chein. 193, 265275.CrossRefGoogle ScholarPubMed
Nayak, P., Basu, D., Das, S., Basu, A., Ghosh, D., Ramakrishnan, N. Av Ghosh, M. and Sen, S. K. (1997) Transgenic elite indica plants expressing CrylA-endotoxin of Bacillus thnringiensis are resistant against yellow stemborer (Scirpophaga incertulas). Proc. Nati. Acad. Sci. USA 94, 21112116.CrossRefGoogle Scholar
Peferoen, M. (1997) Insect control with transgenic plants expressing Bacillus thnringiensis crystal proteins, pp. 2148. In Advances in Insect Control (Edited by Carozzi, N. B. and Koziel, M. G.). Taylor and Francis, London.Google Scholar
Ramasamy, C., Shanmugam, T. R. and Suresh, D. (1996) Constraints to higher rice yields in different rice production environments and prioritization of rice research in southern India, pp. 145160. In Rice Research in Asia: Progress and Priorities (Edited by Evenson, R. E., Vlerdt, R. W. and Hussain, M.). CAB International and international Rice Research Institute, Manila, Philippines.Google Scholar
Reeck, G. R., Kramer, K. J., Baker, J. E., Kanost, M. R., Fabrick, J. A. and Behnke, C. A. (1997) Proteinase inhibitors and resistance of transgenic plants to insects, pp. 157183. In Advances in Insect Control (Edited by Corazzi, N. B. and Koziel, M. G.). Tailor and Francis, London.Google Scholar
Ryan, C. A. (1981) Protease inhibitors in plants: Genes for improving defenses against insects and pathogens. Annu. Rev. Phytopathol. 28, 425449.CrossRefGoogle Scholar
van Frankenhuyzen, K. (1993) The challenge of Bacillus thuringiensis, pp. 135. In Bacillus thuringiensis an Environmental Biopesticide: Theory and Practice (Edited by Entwistle, P. F., Corey, J. S., Bailey, M. J. and Higgs, S.). John Wiley & Sons, Sussex, England.Google Scholar
Widawsky, D. A. and O'Toole, J. C. (1996) Prioritizing the rice research agenda for eastern India, pp. 109129. In Rice Research in Asia: Progress and Priorities (Edited by Evenson, R. E., Herdt, R. W. and Hussain, M.). CAB International and International Rice Research Institute, Manila, Philippines.Google Scholar
Wu, C., Fan, Y., Zhang, C., Oliva, N. and Datta, S. K. (1997) Transgenic fertile jap?nica rice plants expressing a modified crylA(b) gene resistant to yellow stem borer. Plant Cell Report 17, 129132.CrossRefGoogle Scholar
Wu, Y., Llewellyn, D., Mathews, A. and Dennis, E. S. (1997) Adaptation of Helicoverpa armigera (Lepidoptera: Noctuidae) to a proteinase inhibitor expressed in transgenic tobacco. Mol. Breeding 3, 371380.CrossRefGoogle Scholar
Wünn, J., Kloti, A., Burkhardt, P. K., Ghosh Biswas, G. C., Launis, K., Iglesias, V. and Potrykus, I. (1996) Transgenic indica rice breeding line IR58 expressing a synthetic crylA(b) gene from Bacillus thuringiensis provides effective insect pest control. Bio/Technology 14, 171176.Google Scholar
Xu, D., Xue, Q., McElroy, D., Mawal, Y, Hilder, V. A. and Wu, R. (1996) Constitutive expression of a cowpea trypsin inhibitor gene CpTi, in transgenic rice plants confer resistance to two major rice insect pests. Mol. Breeding 2, 186–173.CrossRefGoogle Scholar