Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T23:53:06.764Z Has data issue: false hasContentIssue false

Functional Ultrastructure of Malpighian Tubules of Tsetse, Glossina morsitans morsitans Westwood (Diptera: Glossinidae)

Published online by Cambridge University Press:  19 September 2011

J. A. Kongoro
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
T. R. Odhiambo
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
Get access

Abstract

The tsetse, Glossina morsitans morsitans, has two pairs of Malpighian tubules. Ultrastructurally, the tubules consist of three recognizable functional zones: the distal, intermediate and proximal regions, which are characterized by three distinct cell types: I, II and III respectively. The three cell types had numerous microvilli and basal infoldings: the microvilli of type I and II cells were associated with long mitochondria, while those of type III were devoid of mitochondria. Autoradiographic observations using (3H) glucose indicated that there was synthetic activity in the tubules, and that there was greater incorporation of the radiochemical in the distal and intermediate tubule regions than in the proximal region. The distal and intermediate regions have some functional similarities. With regard to primary urine formation in the tubules, it is suggested that the cell types I and II (and hence the distal and intermediate regions) are secretory, and the cell type III (that is, the proximal region) is absorptive. “Canaliculi” in the proximal region increase the surface area for absorption.

Résumé

Le tsétsé, Glossina morsitans morsitans, a deux paires de tubes Malpigiens. Ultrastructurellement, les tubes sont formés de 3 zones de fonction reconnaissable: les régions distale, intermédiaire et proximale caractérisées respectivement par trois types de cellules distinctes: I, II et III. Ces trois types de cellules présentent de nombreux microvilli et des replis basaux. Les microvilli des cellules de type I et II sont associés aux longues mitochondries, alors que ceux du type III en sont dépourvus. Des observations autoradiographiques par utilisation de glucose (3H) indiquent qu'il y a une activité synthétique dans les tubes avec une plus forte incorporation du produit radiochimique dans les régions distale et intermédiaire par rapport à la région proximale. Les régions distale et intermédiaire ont des fonctions similaires. Compte tenu de la formation primaire de l'urine dans les tubes, on peut indiquer que les cellules de type I et II (régions distale et intermédiaire) sont sécrétoires, et que les cellules de type III (région proximale) sont absorbantes. Les “canalicules” dans la région proximale augmentent la surface de la zone d'absorption.

Type
Research Article
Copyright
Copyright © ICIPE 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alberts, B., Bray, B., Lewis, J., Raff, M., Roberts, K. and Watson, J. D. (1983) Molecular Biology of the Cell. Garland Publishing, Inc., New York.Google Scholar
Alkassis, W. and Schoeller-Raccaud, J. (1984) Ultrastructure of the Malpighian tubules of blowfly larva, Calliphora erythrocephala Meigen (Diptera: Calliphoridae). Int. J. Insect Morphol. Embryol. 13, 215231.CrossRefGoogle Scholar
Berridge, M. J. (1966) Metabolic pathways of isolated Malpighian tubules of the blowfly functioning in an artificial medium. J. Insect Physiol. 12, 15231538.CrossRefGoogle Scholar
Berridge, M. J. and Oschman, J. L. (1969) A structural basis for fluid secretion by the Malpighian tubules. Tissue & Cell 1, 247272.CrossRefGoogle ScholarPubMed
Berridge, M. J. and Oschman, J. L. (1972) Transporting Epithelia. Academic Press, London.CrossRefGoogle Scholar
Bulger, R. E. (1983) The urinary system. In Histology, Cell and Tissue Biology (Edited by Weiss, L.), pp. 869913. Elsevier Biomedical, Amsterdam.CrossRefGoogle Scholar
Cochran, D. G. (1975) Excretion in insects. In Insect Biochemistry and Function (Edited by Candy, D. J. and Kilby, B. A.), pp. 177281. Chapman and Hall, London.Google Scholar
Cochran, D. G. (1985) Excretory systems. In Fundamentals of Insect Physiology (Edited by Blum, M. S.), pp. 5989. John Wiley and Sons, New York.Google Scholar
Eichelberg, D. and Wessing, A. (1975) Morphology of the Malpighian tubules of insects. Fortschr. Zool. 23, 124147.Google Scholar
Fawcet, D. (1981) The Cell. Saunders, Philadelphia.Google Scholar
Gee, J. D. (1974) Mechanism and control of diuresis in the tsetse fly, Glossina austeni. Ph.D. thesis, University of Cambridge.CrossRefGoogle Scholar
Gee, J. D. (1975) Diuresis in the tsetse fly, Glossina austeni. J. Exp. Biol. 63, 381390.CrossRefGoogle ScholarPubMed
Gee, J. D. (1976) Active transport of sodium by the Malpighian tubules of the tsetse fly, Glossina morsitans. J. Exp. Biol. 64, 357368.CrossRefGoogle Scholar
Glauert, A. M. (1975) Fixation, dehydration and embedding of biological specimens. In Practical Methods in Electron Microscopy (Edited by Glauert, A. M.), North-Holland, London.Google Scholar
Green, L. F. B. (1979) Regional specialization in the Malpighian tubules of the New Zealand glow-worm, Arachnocampa luminosa (Diptera: Mycetophilidae). The structure and function of Type I and II cells. Tissue & Cell 11, 673702.CrossRefGoogle ScholarPubMed
Maddrell, S. H. P. (1971) The mechanisms of insect excretory systems. Adv. Insect Physiol. 8, 199331.CrossRefGoogle Scholar
Maddrell, S. H. P. (1978) Physiological discontinuity in an epithelium with an apparently uniform structure. J. Exp. Biol. 75, 133145.CrossRefGoogle Scholar
Maddrell, S. H. P. (1980) The control of water relations in insects. In Insect Biology in the FutureVBW 80” (Edited by Locke, M. and Smith, D. S.), pp. 179199. Academic Press, London.CrossRefGoogle Scholar
Martoja, R. and Ballan-Dufrancais, C. (1984) The ultrastructure of the digestive and excretory organs. In Insect Ultrastructure (Edited by King, R. C. and Akai, H.) pp. 199268. Plenum Press, London.CrossRefGoogle Scholar
Mcfarlene, J. E. (1985) Nutrition and digestive organs. In Fundamentals of Insect Physiology, (Edited by Blum, M. S.), pp. 5989. John Wiley and Sons, New York.Google Scholar
Reynolds, E. S. (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 202212.CrossRefGoogle ScholarPubMed
Smith, D. S. (1968) Insect Cells: Their Structure and Function. Oliver and Boyd, Edinburg.Google Scholar
Smith, D. S. and Littau, V. C. (1960) Cellular specialization in the excretory epithelia of an insect, Macrosteles fascifrons Stål (Homoptera). J. biophys. biochem. Cytol. 8, 103133.CrossRefGoogle ScholarPubMed
Sohal, R. S. (1974) Fine structure of the Malpighian tubules in the house fly Musca domestica. Tissue & Cell 6, 719728.CrossRefGoogle Scholar
Wall, B. J., Oschman, J. L. and Schmidt, B. A. (1975) Morphology and function of the Malpighian tubules and associated structures in the cockroach, Periplaneta americana. J. Morphol. 146, 265306.CrossRefGoogle ScholarPubMed
Weibel, E. R. (1979) Stereological Methods: Vol. 1, Practical Methods for Biological Morphometry. Academic Press, London.Google Scholar
Wigglesworth, V. B. (1931) The physiology of excretion in a blood-sucking insect, Rhodnius prolixus (Hemiptera, Reduviidae) II: anatomy and histology of the excretory systems. J. exp. Biol. 8, 428442.CrossRefGoogle Scholar
Wigglesworth, V. B. and Salpeter, M. M. (1962) Histology of the Malpighian tubules in Rhodnius prolixus Stål (Hemiptera). J. Insect Physiol. 8, 299307.CrossRefGoogle Scholar
Williams, M. A. (1977) Autoradiography and immunocytochemistry. In Practical Methods in Electron Microscopy (Edited by Glauert, A. M.), North-Holland, London.Google Scholar