Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T19:14:16.586Z Has data issue: false hasContentIssue false

Host defensive behaviour and the feeding success of mosquitoes

Published online by Cambridge University Press:  19 September 2011

John D. Edman
Affiliation:
Department of Entomology, University of Massachusetts, Amherst, MA 01003
Thomas W. Scott
Affiliation:
Department of Entomology, University of Maryland, College Park, MD 20742
Get access

Abstract

Defensive behaviour is one of the principal ways vertebrate hosts regulate the blood-feeding success of vector insects. Intrinsic variation in the intensity and efficiency of this biting avoidance behaviour depends on host: (1) species, (2) size, (3) age, (4) health and (5) individuality. In this paper we summarize data on the relative importance of each of these host-associated factors in regulating mosquito feeding and transmission of mosquito-borne diseases.

Résumé

Le procédé défensif est un des moyens principaux que le succès d'alimentation sanguin des vecteurs est contrôlé par les hôtes vertébré. Variation intrinsèque à l'intensité et l'efficacité de ce procédé défensif dépend sur (1) l'espèce (2) la grandeur (3) l'âge (4) la santé et (5) l'individualité de l'hôte. A cette composition, nous résumons les données au sujet de l'importance relatif de chaque facteur associé avec l'hôte sur la contrôle d'alimentation sanguin pars les moustiques et sur la transmission des maladies qui sont portées par les moustiques.

Type
Symposium V: Host-seeking Mechanisms of Arthropods of Medical and Veterinary Importance
Copyright
Copyright © ICIPE 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blackmore, J. S. and Dow, R. P. (1958) Differential feeding of Culex tarsalis on nestling and adult birds. Mosq. News 18, 1517.Google Scholar
Day, J. F. (1982) The effect of host health on mosquito engorgement success and its possible importance in disease transmission. Ph.D. Dissertation. University of Massachusetts, Amherst, MA, USA.Google Scholar
Day, J. F., Ebert, K. M. and Edman, J. D. (1982) Age of murine hosts determined by binding of estradiol to mosquito blood meals. J. Med. Ent. 19, 357360.Google Scholar
Day, J. F., Ebert, K. M. and Edman, J. D. (1983) Feeding patterns of mosquitoes (Diptera: Culicidae) simultaneously exposed to malarious and healthy mice, including a method for separating blood meals from conspecific hosts. J. Med. Ent. 20, 120127.Google Scholar
Day, J. F., and Edman, J. D. (1984) Mosquito engorgement on normally defensive hosts depends on host activity patterns. J. Med. Ent. 21, 732740.CrossRefGoogle ScholarPubMed
Downes, C. M., Theberge, J. B., and Smith, S. M. (1986) The influence of insects on the distribution, microhabitat choice, and behavior of the Burwash caribou herd. Can. J. Zool. 64, 622629.Google Scholar
Edman, J. D., and Kale, H. W. (1971) Host behavior: its influence on the feeding success of mosquitoes. Ann. Ent. Am. 64, 513516.CrossRefGoogle Scholar
Edman, J. D., Webber, L. A. and Kale, H. W. (1972) Effect of mosquito density on the interrelationship of host behavior and mosquito feeding success. Am. J. Trop. Med. Hyg. 21, 487491.CrossRefGoogle ScholarPubMed
Edman, J. D., Webber, L. A. and Schmid, A. (1974) Effect of host defenses on the feeding pattern of Culex nigripalpus when offered a choice of blood sources. J. Parasit. 60, 874883.Google Scholar
Edman, J., Day, J. and Walker, E. (1985) Vector-host interplay: factors affecting disease transmission. In Ecology of Mosquitoes: Proceedings of a Workshop, (Edited by Lounibos, L. P., Rey, J. R. and Frank, J. H.), pp. 273285. University of Florida, FMEL, Vero Beach, FL, USA.Google Scholar
Isaacs, C. (1986) Anti-mosquito behavior In Peromyscus leucopus (white-footed mouse). Ph.D. Dissertation, University of New Hampshire, Durham, NH, USA.Google Scholar
Kale, H. W., Edman, J. D. and Webber, L. A. (1972) Effect of behavior and age of individual ciconiiform birds on mosquito feeding success. Mosq. News 32, 343350.Google Scholar
Kartman, L. (1957) The concept of vector efficiency in experimental studies of plague. Expt. Parasitol. 6, 599609.CrossRefGoogle ScholarPubMed
Klowden, M. J. (1983) The physiological control of mosquito host-seeking behavior. In Current Topics in Vector Research, (Edited by Harris, K. F.), pp. 93115. Praeger Scientific.Google Scholar
Lapointe, D. A. (1982) The effect of host age on mosquito attraction, feeding and fecundity. M. Sc. Thesis Univ. of Massachusetts, Amherst, MA, USA.Google Scholar
Molyneux, D. H., and Jefferies, D. (1986) Feeding behaviour of pathogen-infected vectors. Parasitology, 92, 721736.CrossRefGoogle ScholarPubMed
Scott, T. W. (1987) Vertebrate host ecology. In Arboviruses: Epidemiology and Ecology. (Edited by Monath, T. P.), Vol. 1. CRC Press, Inc., Boca Raton, FL (in press).Google Scholar
Scott, T. W., Edman, J. D., Lorenz, L. H., and Hubbard, J. L. (1987) Effects of disease on vertebrates ability to behaviorally repel host-seeking mosquitoes. In Vector-Host Interactions in Disease Transmission, (Edited by Scott, T. W. and Grumstrup-Scott, J.). Ent. Soc. Am. Misc. Publ, (in press).Google Scholar
Steelman, D. (1976) Effect of external and internal arthropod parasites on domestic livestock production. A. Rev. Ent. 21, 155178.Google Scholar
Walker, E. D., and Edman, J. D. (1986) Influence of defensive behavior of eastern chipmunks and gray squirrels (Rodentia: Sciuridae) on feeding success of Aedes triseriatus (Diptera: Culicidae). J. Med. Ent. 23, 110.Google Scholar
Yuill, T. M. (1983) The role of mammals in the maintenance and dissemination of La Crosse virus, In California Serogroup Viruses, (Edited by Calisher, C. H. and Thompson, W. H.), Vol. 123 pp. 7778. Progress in Clinical and Biological Research, Alan R. Liss, Inc., New York.Google Scholar