Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T05:15:10.288Z Has data issue: false hasContentIssue false

Resistance of different host plants and cultivars of cassava to the mealybug Phenacoccus manihoti: Effect of infestation on leaf extract composition

Published online by Cambridge University Press:  08 March 2017

M. Tertuliano
Affiliation:
Laboratoire d'Entomologie Agricole, B.P. 181, Brazzaville, Congo
B. Le Rü
Affiliation:
Laboratoire d'Entomologie Agricole, B.P. 181, Brazzaville, Congo
Get access

Abstract

The effect of a 2-month infestation by the cassava mealybug (Phenacoccus manihoti Mat. Ferr.) on the metabolism of nitrogen (amino acids) and carbon (carbohydrates), leaf area and total dry weight of five cassava varieties (Manihot esculenta Crantz), faux-caoutchouc (a hybrid of M. esculenta and M. glaziovii Muell, Arg.), poinsettia (Euphorbia pulcherrima Wild) and talinum (Talinum triangulare Jack) was studied. Free amino acid and free sugar contents as well as relative free amino acid composition in the leaf extracts, although found to be very different from one plant to another, were not significantly modified by P. manihoti infestation, except for the total amino acid contents of the cassava variety 30M7. Variations in one particular amino acid induced by mealybug infestation were not linked to the antibiotic resistance of these plants. Infestation by the cassava mealybug did not modify the total dry weight but reduced the total leaf area although this reduction was only significant in cassava varieties 59M2, 30M7 and M'pembe, and in faux-caoutchouc. Within the genus Manihot, the reduction in leaf area was strongly correlated (r= -0.878, P≤0.05) to the degree of antibiotic resistance and was coupled to an increase in the ratio of sugars to amino acids, suggesting a similarity between the effects of water stress and those of mealybug infestation.

Résumé

L'effet de l'infestation de 2 mois par la cochenille du manioc (Phenacoccus manihoti Mat. Ferr.) sur le métabolisme de l'azote (acides aminés) et du carbon (carbohydrates), sur la surface de la feuille et le poids sec total de 5 variétés de manioc (Manihot esculenta Crantz), le faux-caoutchouc (une hybride de M. esculenta et M. glaziovii Muell, Arg.), le poinsettia (Euphorbia pulcherrima Wild) et le talinum (Talinum triangulare Jack) a été étudié. Toutes ces plantes-hôtes sont caractérisées par differents degrés de résistance antibiotique envers P. manihoti. Leurs teneurs en acides aminés libres et sucres libres ainsi que la composition relative d'acides aminés libres dans les extraits des feuilles, quoique différentes d'une plante à l'autre, n'ont pas été significativement modifiées par l'infestation avec P. manihoti, excepté les teneurs en acides aminés total de la variété de manioc 30M7. Des variations chez un acide aminé particulier induites par l'infestation de la cochenille n'ont pas été liées à la résistance antibiotique de ces plantes. L'infestation par la cochenille du manioc n'a pas modifié le poids sec total mais a reduit la surface totale de feuille quoique cette réduction n'était significative que chez les variétés de manioc 59M2, 30M7 et M'pembe et chez le faux-caoutchouc. Au sein du genre Manihot, la réduction de la surface de feuille a été fortement correlée (r = −0,878, P ≤ 0,05) au degré de résistance antibiotique et a été associée à un accroissement du rapport sucres/acides aminés, suggérant une similarité entre les effets de carence d'eau et ceux de l'infestation de la cochenille.

Type
Research Articles
Copyright
Copyright © ICIPE 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ciepiela, A. (1989) Changes in phenylalanine and tyrosine content and metabolism in ears of susceptible and aphid resistant winter wheat cultivare upon infestation by Sitobion avenae. Entomol. exp. appl. 51, 277281.CrossRefGoogle Scholar
Dagnélie, P. (1975) Analyse Statistique à Plusieurs Variables. Les presses agronomiques de Gembloux, 360 pp.Google Scholar
Dixon, A. F. G. (1970) Quality and availability of food for a sycamore aphid population. In Animal Populations in Relation to their Food Resources (Edited by Watson, A.), pp. 271287. Blackwell Scientific Publications, Oxford.Google Scholar
Dixon, A. F. G. (1987) Seasonal development in aphids. In Aphids: Their Biology, Natural Enemies and Control (Edited by Minks, A. K. and Harrewijn, P.), Vol. 2A, pp. 315320. Elsevier, Amsterdam, The Netherlands.Google Scholar
Dorschner, R. W., Ryan, J. D., Johnson, R. C. and Eikenbary, R. D. (1987) Modification of host nitrogen levels by the greenbug (Homoptera: Aphididae): Its role in resistance of winter wheat to aphids. Environ. Entomol. 16, 10071011.CrossRefGoogle Scholar
Drossopoulos, J. B., Karamanos, A. J. and Niavis, C. A. (1985) Changes in free amino compounds during the development of two wheat cultivars subjected to different degrees of water stress. Ann. Bot. 56, 291305.CrossRefGoogle Scholar
Fisher, M. (1987) The effect of previously infested spruce needles on the growth of the green spruce aphid, Elatobium abietinum, and the effect of the aphid on the amino acid balance of the host plant. Ann. Appl. Biol. 111, 3341.CrossRefGoogle Scholar
Fowler, S. V. and Lawton, J. H. (1985) Rapidly induced defenses and talking trees: The devil's advocate position. Am. Nat. 126, 181195.CrossRefGoogle Scholar
Hammer, G. L. (1980) Estimation of cassava leaf area by a simple, non destructive field technic. J. Austr. Inst. Agric. Sci. pp. 6162.Google Scholar
Harborne, J. B. (1982) Introduction to Ecological Biochemistry, 2nd Ed. Academic Press, New York.Google Scholar
Havlickova, H. (1987) Free amino acids metabolism in two wheat cultivars infested by Rhopalosiphum padi. In Insect-Plants (Edited by Labeyrie, V., Fabres, G. and Lachaise, D.), p. 393. Junk, Pau, France.Google Scholar
Herren, H. R. (1987) Africa-wide Biological Control Programme of Cassava Pests, Symposium XI: A review of objectives and achievements. Insect Sci. Applic. 8, 837840.Google Scholar
Holmes, R. S., Berton, R. L., Burd, J. D. and Ownby, J. D. (1991) Effect of greenbug (Homoptera: Aphididae) feeding on carbohydrate levels in wheat. J. Econ. Entomol. 84, 897901.CrossRefGoogle Scholar
Iheagwam, E. U. (1981) Natural enemies and alternative hostplant of the cassava mealybug, Phenacoccus manihoti (Homoptera: Pseudococcidae) in southeastern Nigeria. J. Ayr. Zool. 95, 433438.Google Scholar
Klingauf, F. A. (1987) Feeding, adaptation and excretion. In Aphids: Their Biology, Natural Enemies and Control (Edited by Minks, A.K. and Harrewijn, P.), Vol. 2A, pp. 225253. Elsevier, Amsterdam, The Netherlands.Google Scholar
Kramer, P. J. (1983) Water Relations of Plants. Academic Press, New York.Google Scholar
Laughlin, R. (1965) Capacity for increase: A useful population statistic. J. Anim. Ecol. 34, 7791.CrossRefGoogle Scholar
Le Rü, B. and Tertuliano, M. (1994) Tolerance of different host plants to the cassava mealybug Phenacoccus manihoti Matile-Ferrero (Homoptera: Pseudococcidae). Int. J. Pest Manage. 39, 379384.CrossRefGoogle Scholar
Macfoy, C. C. A. and Dabrowski, Z. T. (1984) Preliminary studies on cowpea resistance to Aphis craccivora Koch (Hom.: Aphididae). Z. Angew. Entomol. 97, 202209.CrossRefGoogle Scholar
Mattson, W. J. Jr. (1980) Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 11, 119161.CrossRefGoogle Scholar
McNeil, S. and Southwood, T. R. E. (1978) Role of nitrogen in the development of insect-plant relationships. In Biochemical Aspects of Plant and Animal Coevolution (Edited by Harborne, J. B.), pp. 7798. Academic Press, New York.Google Scholar
Miles, P. W. (1989) The responses of plants to the feeding of Aphididoidea: Principles. In Aphids Their Biology, Natural Enemies and Control (Edited by Minks, A. K. and Harrewijn, P.), Vol. 2C, pp. 116. Elsevier, Amsterdam, The Netherlands.Google Scholar
Neuenschwander, P., Schulthess, F. and Madojemu, E. (1986) Experimental evaluation of the efficiency of Epidinocarsis lopezi, a parasitoïd introduced into Africa against the cassava mealybug Phenacoccus manihoti. Entomol. exp. appl. 42, 133138.CrossRefGoogle Scholar
Newbery, D. McC. (1980) Interactions between the coccid, Icerya seychellarum (Wetw.), and its host tree species on Aldabra Atoll. Oecologia (Berl.) 46, 171179.CrossRefGoogle ScholarPubMed
Painter, R. H. (1951) Insect Resistance in Crop Plants. The University Press of Kansas, Lawrence.CrossRefGoogle Scholar
Pereira, J. F. and Splittstoesser, W. E. (1987) Exudate from cassava leaves. Agric. Ecosyst. Environ. 8, 191194.CrossRefGoogle Scholar
Poehling, H. M. (1985) Einfluss von Aphis fabae Scop. (Homoptera: Aphididae) auf den protein und aminosäurestoffwechsel von Viciafaba. Mitt. Deutsch. Gesell. Allgem. Angew. Entomol. 4, 366369.Google Scholar
Rhoades, D. F. (1983) Herbivore population dynamics and plant chemistry. In Variable Plants and Herbivores in Natural and Managed Systems (Edited by Denno, R. F. and McClure, M. S.), pp. 155220. Academic Press, New York.CrossRefGoogle Scholar
Rhoades, D. F. (1985) Offensive-defensive interactions between herbivores and plants: Their relevance in herbivore population and ecological theory. Am. Nat. 125, 205238.CrossRefGoogle Scholar
Rohringer, R., Ebrahim-Nesbat, F. and Wolf, G. (1983) Protein in intercellular washing fluids from leaves of barley (Hordeum vulgarae L.). J. Exp. Bot. 34, 15891605.CrossRefGoogle Scholar
Silvestre, P. (1973) Aspects agronomiques de la production du manioc à la ferme d'état de Mantsoumba (Rép. Pop. Congo). Rapport de mission, I.R.A.T., Paris, 35 pp.Google Scholar
Strong, D. R., Lawton, J. H. and Southwood, R. (1984) Insects of Plants—Community Pattern and Mechanisms. Blackwell Scientific Publications, Oxford.Google Scholar
Tertuliano, M., Dossou-Gbete, S. and Le Rü, B. (1993) Antixenotic and antibiotic components of resistance to the cassava mealybug Phenacoccus manihoti (Hom. Pseudococcidae) in various host plants. Insect Sci. Applic. 14, 657665.Google Scholar
Tertuliano, M. and Le Rü B. (1992) Interaction entre la cochenille du manioc Phenacoccus manihoti et ses différentes plantes-hôtes: Etude de la teneur de la sève en acide aminé et en sucre. Entomol. exp. appl. 64, 19.CrossRefGoogle Scholar
Tomlin, E. S. and Sears, M. K. (1992) Effects of colorado beetle and potato leafhopper on amino acid profile of potato foliage. J. Chem. Ecol. 18, 481488.CrossRefGoogle ScholarPubMed
Wellings, P. W. and Dixon, A. F. G. (1987) Sycamore aphid numbers and population density. III. The role of aphid-induced changes in plant quality. J. Anim. Ecol. 56, 161170.CrossRefGoogle Scholar