Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T11:49:13.676Z Has data issue: false hasContentIssue false

Ultrastructural features of the larval Malpighian tubules of the flesh fly Sarcophaga ruficornis (Diptera: Sarcophagidae)

Published online by Cambridge University Press:  10 October 2012

Ruchita Pal
Affiliation:
Department of Zoology, University of Allahabad, Allahabad211002, India
Krishna Kumar*
Affiliation:
Department of Zoology, University of Allahabad, Allahabad211002, India
Get access

Abstract

The larval Malpighian tubules of Sarcophaga ruficornis Fab. consist of two types of cells, namely principal and stellate cells. The principal cells are characterized by a large euchromatic nucleus, well-developed basal plasma membrane infoldings associated with mitochondria and prominent luminal microvilli containing mitochondria with well-developed cristae. The central cytoplasm of the cells contains clear vacuoles, lysosomes, mineral concretions or spherocrystals, lipid droplets and peroxisomes. The stellate cells are thin with extremely short basal plasma membrane infoldings and luminal microvilli devoid of mitochondria. The ultrastructural features of the principal cells show the characteristic of transporting cells engaged in water and ion transport. The cells are separated by septate junctions. The tubules are richly supplied by the tracheae.

Type
Research Paper
Copyright
Copyright © ICIPE 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberts, B., Bray, D., Lewis, L., Raff, M., Roberts, K. and Watson, J. D. (1994) Molecular Biology of the Cell, 3rd edn.Garland Publishing Inc., New York, NY.Google Scholar
Alkassis, W. and Schoeller-Raccaud, J. (1984) Ultrastructure of the Malpighian tubules of blow fly larva, Calliphora erythrocephala Meigen (Diptera: Calliphoridae). International Journal of Insect Morphology and Embryology 13, 215231.Google Scholar
Arab, A. and Caetano, F. H. (2002) Segmental specializations in the Malpighian tubules of the fire ant Solenopsis saevissima Forel 1904 (Myrmicinae): an electron microscopical study. Arthropod Structure and Development 30, 281292.Google Scholar
Beard, M. E. and Holtzman, E. (1987) Peroxisomes in wild-type and rosy mutant Drosophila melanogaster. Proceedings of the National Academy of Sciences of the USA 84, 74337437.CrossRefGoogle ScholarPubMed
Berridge, M. J. and Oschman, J. L. (1969) A structural basis for fluid secretion by Malpighian tubules. Tissue and Cell 1, 247272.CrossRefGoogle ScholarPubMed
Berridge, M. J. and Oschman, J. L. (1972) Transporting Epithelia. Academic Press, New York, London.CrossRefGoogle Scholar
Bradley, T. J. (1985) The excretory system: structure and physiology, 421465 pp. In Comprehensive Insect Physiology, Biochemistry and Pharmacology (edited by ), Vol. 4. Pergamon Press, Oxford.Google Scholar
Bradley, T. J., Stuart, A. M. and Satir, P. (1982) The ultrastructure of the larval Malpighian tubules of a saline-water mosquito. Tissue and Cell 14, 759773.Google Scholar
Chapman, R. F. (2008) The Insects: Structure and Function, 4th edn.Cambridge University Press, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo. 770 pp.Google Scholar
Dow, J. A. T. (2009) Insights into the Malpighian tubule from functional genomics. Journal of Experimental Biology 212, 435445.CrossRefGoogle ScholarPubMed
Gaertner, L. S. and Morris, C. E. (1999) Accumulation of daunomycin and fluorescent dyes by drug transporting Malpighian tubule cells of the tobacco horn worm Manduca sexta. Tissue and Cell 31, 185194.CrossRefGoogle Scholar
Garayoa, M., Villaro, A. C., Montuenga, L. and Sesma, P. (1992) Malpighian tubules of Formica polyctena (Hymenoptera): light and electron microscopic study. Journal of Morphology 214, 159171.Google Scholar
Gillott, C. (2005) Entomology, 3rd edn.Springer, The Netherlands. 831 pp.CrossRefGoogle Scholar
Green, L. F. B. (1979) Regional specialization in the Malpighian tubules of the New Zealand glow-worm Arachnocampa luminosa (Diptera: Mycetophilidae). The structure and function of type I and II cells. Tissue and Cell 11, 673702.Google Scholar
Hazelton, S. R., Townsend, V. R., Richter, C., Ritter, M. E., Felgenhauer, B. E. and Spring, J. H. (2002) Morphology and ultrastructure of the Malpighian tubules of the Chilean common tarantula (Araneae: Theraphosidae). Journal of Morphology 251, 7382.Google Scholar
Hruban, Z. and Rechcigl, M. (1969) Microbodies and related particles: morphology, biochemistry, and physiology. International Review of Cytology 1, 296.Google Scholar
Jarial, M. S. (1988) Fine structure of the Malpighian tubules of Chironomus larva in relation to glycogen storage and fate of hemoglobin. Tissue and Cell 20, 355380.Google Scholar
Kapoor, N. N. (1994) A study of the Malpighian tubules of the plecopteran nymph Paragnetina media (Walker) (Plecoptera: Perlidae) by light, scanning electron, and transmission electron microscopy. Canadian Journal of Zoology 72, 15661575.Google Scholar
McGettigan, J., McLennan, R. K., Broderick, K. E., Kean, L., Allan, A. K., Cabrero, P., Reguiski, M. R., Pollock, V. P., Gould, G. W. and Davies, S. A. (2005) Insect renal tubules constitute a cell-autonomous immune system that protects the organism against bacterial infection. Insect Biochemistry and Molecular Biology 35, 741754.CrossRefGoogle ScholarPubMed
Maddrell, S. H. P. (1971) The mechanisms of insect excretory systems. Advances in Insect Physiology 8, 199331.Google Scholar
Maddrell, S. H. P. (1977) Insect Malpighian tubules, pp. 541569. In Transport of Ions and Water in Animals (edited by ). Academic Press, New York, London.Google Scholar
Maddrell, S. H. P. (1981) The functional design of the insect excretory system. Journal of Experimental Biology 90, 115.Google Scholar
Maddrell, S. H. P. and Gardiner, B. O. C. (1974) The passive permeability of insect Malpighian tubules to organic solutes. Journal of Experimental Biology 60, 641652.CrossRefGoogle ScholarPubMed
Nicolson, S. W. (1993) The ionic basis of fluid secretion in insect Malpighian tubules: advances in the last ten years. Journal of Insect Physiology 39, 451458.Google Scholar
Noirot-Timothée, C. and Noirot, C. (1980) Septate and scalariform junctions in arthropods. International Review of Cytology 63, 97140.Google Scholar
Pannabecker, T. L., Aneshansley, D. J. and Beyenbach, K. W. (1992) Unique electrophysiological effects of dinitrophenol in Malpighian tubules. American Journal of Physiology 263, 609614.Google ScholarPubMed
Pannabecker, T. (1995) Physiology of the Malpighian tubule. Annual Review of Entomology 40, 493510.Google Scholar
Skaer, H., Le, B., Harrison, J. B. and Maddrell, S. H. P. (1990) Physiological and structural maturation of a polarised epithelium: the Malpighian tubules of a blood-sucking insect, Rhodnius prolixus. Journal of Cell Science 96, 537547.Google Scholar
Sohal, R. S. (1974) Fine structure of the Malpighian tubules in the housefly, Musca domestica. Tissue and Cell 6, 719728.Google Scholar
Sohal, R. S. and Lamb, R. E. (1979) Storage-excretion of metallic cations in the adult housefly, Musca domestica. Journal of Insect Physiology 25, 119124.Google Scholar
Sohal, R. S., Peters, P. D. and Hall, T. A. (1976) Fine structure and X-ray microanalysis of mineralized concretions in the Malpighian tubules of the housefly Musca domestica. Tissue and Cell 8, 447458.Google Scholar
Sohal, R. S., Peters, P. D. and Hall, T. A. (1977) Origin, structure, composition and age-dependence of mineralized dense bodies (concretions) in the midgut epithelium of the adult housefly, Musca domestica. Tissue and Cell 9, 87102.CrossRefGoogle ScholarPubMed
Wall, B. J., Oschman, J. L. and Schmidt, B. A. (1975) Morphology and function of Malpighian tubules and associated structures in the cockroach, Periplaneta americana. Journal of Morphology 146, 265306.CrossRefGoogle ScholarPubMed
Wessing, A. and Eichelberg, D. (1975) Morphology of the Malpighian tubules of insects. Fortschritte der Zoologie 23, 124147.Google Scholar
Wessing, A. and Zierold, K. (1992) Metal-salt feeding causes alterations in concretions in Drosophila larval Malpighian tubules as revealed by X-ray microanalysis. Journal of Insect Physiology 38, 623632.Google Scholar
Wessing, A., Zierold, K. and Polenz, A. (1999) Stellate cells in the Malpighian tubules of Drosophila hydei and D. melanogaster larvae (Insecta, Diptera). Zoomorphology 119, 6371.Google Scholar