Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T11:05:32.622Z Has data issue: false hasContentIssue false

Agriculture and Vector Resistance

Published online by Cambridge University Press:  19 September 2011

Jean Mouchet
Affiliation:
Inspecteur général de recherches honoraire de l'ORSTOM, 59 rue d'Orsel, 75018 Paris, France
Get access

Abstract

Agricultural treatments mainly against cotton and rice pests put a considerable insecticide pressure on larvae and sometimes adults of several vector species. Resistances to compounds which had never been used for public health, but were currently employed in agriculture were observed among vectors. It was also noticed that resistance level in some vector species was linked to the quantity of the compound used in the same area against crop pests.

Resistance in Anopheles gambiae in Africa, in An. albimanus in Central America, in An. culicifacies and An. aconitus in South East Asia, in An. sacharovi in Turkey, in Culex tritaeniorhynchus in the Far East as well as the DDT resistance in Simulium damnosum in West Africa, seem to be associated with the agricultural practices.

On the other hand, resistance did not develop in species which, due to their ecology, were not in contact with agricultural insecticide even in areas where DDT was applied for more than 20 years in house spraying. This is the case of An. dirus and An. minimus in Thailand and An. darlingi South America.

However several important factors like Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus, have developed resistance for which agricultural treatments cannot be held responsible. It would be worth saying that the rise in malaria in certain countries, such as India, is only due to the increase of insecticide in agriculture after the “green revolution”.

Résumé

Les traitements agricoles destinés, en particulier, au coton et au riz ont provoqué une pression insecticide considérable sur les larves et quelquefois les adultes de plusieurs espèces de vecteurs. On a observé chez ces derniers le développement de résistances à des produits qui n'avaient jamais été utilisés en santé publique mais étaient d'emploi courant en agriculture. On a également noté que les niveaux de résistance des vecteurs à certains produits étaient étroitement correlés à l'utilisation de ces composés en agriculture dans la même région.

On a ainsi constaté que les résistances d'Anopheles gambiae en Afrique, d'An. albimanus en Amérique Centrale, d'An. culicifacies et d'An. aconitus en Asie, d'An. sacharovi en Turquie, de Culex tritaeniorhynchus en Extrême Orient étaient liées aux pratiques agricoles de même que la résistance au DDT de Simulium damnosum en Afrique de l'Ouest.

Inversement l'utilisation du DDT en traitement intradomiciliaire pendant plus de 20 ans n'a pas entrainé de résistance chez des espèces, comme An. minimus et An. dirus en Thaïlande et An. darlingi en Amérique du Sud, que leur écologie tient à l'écart des traitements agricoles.

Il existe cependant des vecteurs importants comme An. stephensi, Culex quinquefasciatus et Ae. aegypti qui ont développé des résistances dont les traitements agricoles ne peuvent être tenus pour responsables. Ces traitements ne sauraient d'ailleurs supporter la responsabilité totale de la reprise du paludisme dans certains pays comme l'Inde.

Type
Mini Review Article
Copyright
Copyright © ICIPE 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anonymous (1980) Resistance des vecteurs de maladies aux pesticides. Sér. Rapp. Techn., No. 655, OMS, Genève.Google Scholar
Anonymous (1982) Integrated vector control. Ser. Rapp. Techn., No. 688, OMS, Genève.Google Scholar
Ayad, H. and Georghiou, G. P. (1975) Resistance to organophosphates and carbamates in Anopheles albimanus based on reduced sensitivity of acetylcholinesterase. J. econ. Ent. 68, 295297.Google Scholar
Bang, Y. H. (1970) Pesticides spray practices in rice fields and control of culicine mosquitos, Report to WHO/VBC.Google Scholar
Breeland, S. G., Kliewer, J. W., Austin, J. R. and Miller, C. W. (1970) Observation on malathion resistance of adult Anopheles albimanus in Coastal El Salvador. Bull. Org. mond. Santé, 43, 627631.Google Scholar
Brown, A. W. A. and Pal, R. (1973) Resistance des arthropodes aux insecticides. Ser. Monog. OMS, No. 38, OMS, Genève.Google Scholar
Bruce-Chwatt, L. J. (1981) Malaria debated. Nature (Lond.) 294, 302303.Google Scholar
Brun, L. O. and Sales, S. (1975) Evolution de la resistance á la dieldrine d'une population sauvage d'Anopheles funestus Giles en l'absence de traitements selectifs délibérés. Rap. ronéot. OCCGE-ORSTOM, Lab. Entomologie, Bobo-Dioulasso, No. 15/Ent/75 du 25.11.1975.Google Scholar
Chapin, G. and Wasserstrom, R. (1981) Agricultural production and malaria resurgence in Central America and India. Nature (Lond.) 293, 181185.CrossRefGoogle Scholar
Chapin, G. and Wasserstrom, R. (1983) Final words on malaria return. Nature (Lond.) 302, 372.Google Scholar
Curtis, C. F. (1981) Malaria debated. Nature (Lond.) 294, 388.Google Scholar
Davidson, G. (1982a) The agricultural usage of insecticide in Turkey and the resurgence of malaria. Proceed. Int. Work. Resistance to Insecticides used in Public Health and Agriculture, 22–26 Feb. 1982, Nat. Sci. Council, Sri Lanka, 122129.Google Scholar
Davidson, G. (1982b) Likely contacts between insecticides and arthropods of medical importance. Proceed. Int. Work. Resistance to Insecticides used in Public Health and Agriculture, 22–26 Feb. 1982, Nat. Sci. Council, Sri Lanka, 137146.Google Scholar
Georghiou, G. P. (1972) Studies on resistance to carbamate and organophosphorus insecticides in Anopheles albimanus. Am. J. trop. Med. and Hyg. 21, 797806.Google Scholar
Georghiou, G. P. (1982a) The surveillance of pest resistance to insecticides in agriculture. Proceed. Int. Work. Resistance to Insecticides used in Public Health and Agriculture, 22–26 Feb. 1982, Nat. Sci. Council, Sri Lanka, 4662.Google Scholar
Georghiou, G. P. (1982b) The implication of agricultural insecticides in the development of resistance by mosquitos with emphasis on Central America. Proceed. Int. Work. Resistance to insecticides used in Public Health and Agriculture, 22–26 Feb. 1982, Nat. Sci. Council, Sri Lanka, 95121.Google Scholar
Georghiou, G. P., Ariaratnam, V. and Breeland, S. G. (1971) Development of resistance to carbamates and organophosphorus compounds in Anopheles albimanus in nature. Bull. Org. mond. Santé 46, 551554.Google Scholar
Georghiou, G. P., Breeland, S. G. and Ariaratnam, V. (1973) Seasonal escalation of organophosphorus and carbamate resistance in Anopheles albimanus by agricultural sprays. Environ. Ent. 2, 369374.Google Scholar
Grant, C. D. and Brown, A. W. A. (1967) Development of DDT resistance in certain mayflies in New Brunswick. Can. Ent. 99, 10401050.Google Scholar
Guillet, P., Mouchet, J. and Grébaut, S. (1977) La resistance au DDT chez Simulium damnosum s.l. en Afrique de l'Quest, WHO/VBC/77.678.Google Scholar
Hamon, J. and Garrett-Jones, C. (1963) La resistance aux insecticides chez les vecteurs majeurs de paludisme et son importance opérationnelle. Bull. Org. mond. Santé 28, 124.Google Scholar
Hamon, J., Sales, S. and Coz, J. (1968a) Données récentes sur la resistance aux insecticides chez les membres du complexe Anopheles gambiae et chez. An. funestus. Rap. final, VIII° Conf. Techn. OCCGE, avril 1968 Bamako.Google Scholar
Hamon, J., Sales, S., Venard, P., Coz, J. and Brengues, J. (1968b) Présence dans le Sud Ouest de la Haute Volta de populations d'An. funestus Giles resistantes à la dieldrine. Méd. trop. (Marseille) 28, 222226.Google Scholar
Hamon, J., Sales, S. and Coz, J. (1968c) Présence dans le Sud Ouest de la Haute-Volta d'une population d'An. gambiae resistante au DDT. Méd. trop (Marseille) 28, 521529.Google Scholar
Hamon, J. and Ouedraogo, C. S. (1969) La résistance aux insecticides des vecteurs des paludismes humains dans la zone de l'Office du Niger, Mali, et dans la region de Somousso, Haute-Volta. Rap. final de la IXè Conf. Techn. OCCGE, avril 1969, Bobo-Dioulasso.Google Scholar
Herath, P. R. J. (1982) Pesticide resistance and malaria control in Sri Lanka. Proceed. Int. Work. Resistance to Insecticides used in Public Health and Agriculture, 22–26 Feb. 1982, Nat. Sci. Council Sri Lanka, 171—189.Google Scholar
Hobbs, J. H. (1973) Effect of agricultural spraying on Anopheles albimanus densities in a coastal area of El Salvador. Mosquito News 33, 420423.Google Scholar
Ismail, I. A. H. (1982) Resistance induction in vectors in relation to agricultural use of pesticides in South East Asia. Proceed. Int. Work. Resistance to Insecticides used in Public Health and Agriculture, 22–26 Feb. 1982, Nat. Sci. Council, Sri Lanka, 130136.Google Scholar
Ismail, I. A. H. and Phinichpongse (1980) Monitoring susceptibility of malaria vectors and suspected vectors to pesticides in Thailand. WHO/VBC/80.775.Google Scholar
Mouchet, J., Elliot, R., Gariou, J., Voelckel, J. and Varrieras, A. (1960) La résistance aux insecticides de Culex fatigans et les problèmes d'hygiène urbaine au Cameroun. Méd. trop. (Marseille) 20, 447456.Google Scholar
Mouchet, J. and Laigret, J. (1967) La résistance aux insecticides chez les Aedes aegypti à Tahiti. Méd. trop. (Marseille) 27, 685692.Google Scholar
Muir, D. A. (1982) Selection dynamics of populations—pressure due to agricultural pest and vector control. Proceed. Int. Work. Resistance to insecticides used in Public Health and Agriculture, 22–26 Feb. 1982, Nat. Sci. Council, Sri Lanka 211223.Google Scholar
Philippon, B. and Mouchet, J. (1976) Répercussions des aménagements hydrauliques à usage agricole sur l'épidémiologie des maladies à vecteurs en Afrique intertropicale. Cahiers du CENECA, Col. intern. Paris, 3–4 mars 1976, Doc. 3.2–13.Google Scholar
Ramsdale, C. D. (1975) Insecticide resistance in the Anopheles in Turkey. Trans. Roy. Soc. trop. Med. Hyg. 69, 226235.Google Scholar
Sharma, V. P. and Mehrotra, K. N. (1982a) Return of malaria. Nature (Lond.) 298, 210.CrossRefGoogle Scholar
Sharma, V. P. and Mehrotra, K. N. (1982b) Malaria resurgence. Nature (Lond.) 300, 212.Google Scholar
Sharma, V. P. and Mehrotra, K. N. (1983) Final words on malaria return. Nature (Lond.) 302, 372.Google Scholar
Sharma, V. P. and Uprety, H. C. (1982) Preliminary studies on irrigation malaria. Ind. J. Malariol. 19, 139142.Google Scholar
Wasserstrom, R. and Chapin, G. (1981) A reply. Nature (Lond.) 244, 388.Google Scholar
Wattal, B. L., Joshi, G. G. and Das, M. (1981) Role of agricultural insecticides in precipitating vector resistance. J. Comm. Dis. 13, 7175.Google Scholar