Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T05:10:26.389Z Has data issue: false hasContentIssue false

An overview of a systems model of cassava and cassava pests in Africa

Published online by Cambridge University Press:  19 September 2011

A. P. Gutierrez
Affiliation:
Division of Biological Control, University of California, Berkeley, USA
B. Wermelinger
Affiliation:
Division of Biological Control, University of California, Berkeley, USA Institut fur Phytomedizin, ETH, Zurich, Switzerland
F. Schulthess
Affiliation:
International Institute of Tropical Agriculture, Ibadan, Nigeria
J. U. Baumgärtner
Affiliation:
Institut fur Phytomedizin, ETH, Zurich, Switzerland
J. S. Yaninek
Affiliation:
International Institute of Tropical Agriculture, Ibadan, Nigeria
H. R. Herren
Affiliation:
International Institute of Tropical Agriculture, Ibadan, Nigeria
P. Neuenschwander
Affiliation:
International Institute of Tropical Agriculture, Ibadan, Nigeria
B. Lohr
Affiliation:
International Institute of Tropical Agriculture, Ibadan, Nigeria
W. N. O. Hammond
Affiliation:
International Institute of Tropical Agriculture, Ibadan, Nigeria
C. K. Ellis
Affiliation:
Division of Biological Control, University of California, Berkeley, USA
Get access

Abstract

A systems model is described for cassava, Manihot esculenta Crantz, two of its introduced herbivores, the cassava green mite (CGM), Mononychellus tanajoa (Bondar), sensu lato, and the cassava mealybug (CM), Phenacoccus manihoti Mat.-Ferr., the introduced CM parasitoid, Epidinocarsis lopezi (DeSantis) and coccinellid predator of the genus Hyperaspis. The systems model includes the effects of weather, soil nitrogen and water levels on the interactions of the system's components.

The model simulates the distribution of developmental times of cohorts initated at the same time, as well as the number and biomass (energy) dynamics of all populations over time. Biomass acquisition and allocation at the population and organism subunit levels (e.g. leaves, fruit, ova) were also simulated. A common acquisition (i.e. functional response) submodel was used to estimate daily photosynthetic as well as nitrogen and water uptake rates in cassava, in addition to herbivory, parasitism and predation rates for the arthropod species.

This paper presents an overview of the systems model. Simulation results for the plant under pest free conditions were compared to field data. In addition, the model was used to estimate tuber yield losses due to CM and CGM feeding, and to examine the beneficial effects of introduced CM natural enemies as measured by reductions in tuber yield losses.

Résumé

Un modèle de système est décrit pour le manioc, pour deux des herbivores introduits de cette culture l'acarien vert (CGM), Mononychellus tanajoa (Bondar) sensu lato, et la cochenille farineuse du manioc (CM) Phenacoccus manihoti Mat.-Ferr, pour le parasitoïde (Epidinocarsis lopezi (DeSantis)) introduit de la cochenille ainsi que pour une coccinelle prédatrice (Hyperaspis spp.) de la cochenille. Ce modèle de simulation tient compte des effets du climat, de l'azote et du régime hydrique du sol sur les interactions entre les composantes du système.

Le modèle simule la répartition des temps de développement de cohortes entamées au même moment, ainsi que la dynamique du nombre et de la biomasse (de l'énergie) de toutes les populations au fil du temps. L'acquisition et la répartition de la biomasse au niveau de la population et des sous-unités intra-organismes (ex. feuilles, fruits, oefs) ont été également simulées. En vue d'estimer les taux quotidiens de photosynthèse, d'absorbtion d'azote et d'eau, d'herbivorisme, de parasitisme et de prédation pour les espèces d'arthropodes, un sous-modéle commun d'acquisition (c'est-à-dire de réponse fonctionelle) a été utilisé.

Ce document présente une vue d'ensemble de ce modèle de système. Les résultats de la simulation pour les plantes non infestées ont été comparés aux données enregistrées en champ. En outre, le modèle a servi à estimer les pertes de rendement en tubercules dues à la cochenille et à l'acarien vert, ainsi qu'à observer les effets bénéfiques de l'introduction des ennemis naturels de la cochenille, en mesurant les réductions enregistrées dans les pertes de rendement en tubercules.

Type
Symposium XI: Africa-wide Biological Control Programme of Cassava Pests
Copyright
Copyright © ICIPE 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baumgärtner, J., Graf, B., Zahner, Ph., Genini, M. and Gutierrez, A. P. (1986) Generalizing a population model for simulating “Golden Delicious” apple tree growth and development. Acta hortic. 184, 111122.CrossRefGoogle Scholar
Brown, L. G., Jones, J. W., Hesketh, J. D., Hartsog, J. D., Whisler, F. D. and Harris, F. A. (1985) Cotcrop: computer simulation of cotton growth and yield. Miss. Agric. & Forest Exp. Stn., Info. Bull. 69.Google Scholar
Connor, D. J., Cock, J. H. and Parra, G. E. (1981) Response of cassava to water shortage. 1. Growth and yield. Field Crops Res. 4, 181200.CrossRefGoogle Scholar
Cock, J. H. and Reyes, J. A. (1985) Cassava: Research Production and Utilization. UNDP/CIAT.Google Scholar
Curry, G. L., Feldman, R. M. and Smith, K. C. (1978) A stochastic model of a temperature-dependent population. J. Theor. Biol. 13, 197204.Google ScholarPubMed
Evans, L. T. (1975) Crop Physiology—Some Case Histories. Cambridge University Press, Cambridge, Mass.Google Scholar
Frazer, B. D. and Gilbert, N. (1976) Coccinellids and aphids: a quantitative study of the impact of adult ladybirds (Coleoptera: Coccinellidae) preying on field populations of pea aphids (Homoptera: Aphididae). J. Ent. Soc. Brit. Columb. 73, 3356.Google Scholar
Gutierrez, A. P. and Baumgärtner, J. U. (1984a) Multitrophic level models of predator-prey energetics: 1. Age-specific energetic models—pea aphid Acyrthosiphon pisum (Harris) (Homoptera: Aphididae) as an example. Can. Ent. 116, 924932.CrossRefGoogle Scholar
Gutierrez, A. P. and Baumgärtner, J. U. (1984b) Multitrophic level models of predator-prey energetics: II. A realistic model of plant–herbivore–parasitoid–predator interactions. Can. Ent. 116, 933949.CrossRefGoogle Scholar
Gutierrez, A. P., Baumgärtner, J. U., and Hagen, K. S. (1981) A conceptual model for growth, development and reproduction in the ladybird beetle, Hippodamia convergens (Coleoptera: Coccinellidae). Can. Ent. 113, 2133.CrossRefGoogle Scholar
Gutierrez, A. P., Christensen, J. U., Merritt, C. M., Loew, W. B., Summers, C. G. and Cothran, W. R. (1976) Alfalfa and the Egyptian alfalfa weevil (Coleoptera: Curculionidae). Can. Ent. 108, 635648.CrossRefGoogle Scholar
Gutierrez, A. P., Falcon, L. A., Loew, W., Leipzig, P. A. and van den Bosch, R. (1975) An analysis of cotton production in California: a model for Acala cotton and the effects of defoliators on its yield. Environ. Ent. 4, 125136.CrossRefGoogle Scholar
Gutierrez, A. P., Schulthess, F., Wilson, L. T., Villacorta, A. M., Ellis, C. K. and Baumgärtner, J. U. (1987) Energy acquisition and allocation in plants and insects. Can. Ent. 119, 109129.CrossRefGoogle Scholar
Gutierrez, A. P. and Wang, Y. H. (1976) Applied population ecology models for crop production and pest management. In Pest Management, International Institute for Applied Systems Analysis (Edited by Norton, G. A. and Holling, C. S.), pp. 255280. Proc. Ser.Google Scholar
Herren, H. R. and Lema, K. M. (1982) First successful releases. Biocontrol News and Infor., C.A.B. 34, 185.Google Scholar
Herren, H. R., Neuenschwander, P., Hennessey, R. D. and Hammond, W. N. O. (1987) Introduction and dispersal of Epidinocarsis lopezi (Hym., Encyrtidae), an exotic parasitoid of the cassava mealybug, Phenacoccus maniholi (Hom., Pseudococcidae), in Africa, Agric. Ecosystems Envir. (in press).CrossRefGoogle Scholar
Jones, J. W., Thompson, A. C. and Hesketh, J. D. (1974) Analysis of SIMCOT: Nitrogen and growth. Proc. Belt-wide Cotton Prod. Res. Conf, Memphis, pp. 111116.Google Scholar
Loomis, R. S. and Williams, W. A. (1963) Maximum crop productivity: an estimate. Crop Sci. 3, 6772.CrossRefGoogle Scholar
Manetsch, T. J. (1976) Time varying distributed delays and their use in aggregate models of large systems. IEEE Trans. Sys. Man Cybern. 6, 547553.CrossRefGoogle Scholar
Neuenschwander, P., Hennessey, R. D. and Herren, H. R. (1987) Food web of insects associated with the cassava mealybug, Phenacoccus manihoti Matile-Ferrero (Hem-iptera: Pseudococcidae), and its introduced parasitoid, Epidinocarsis lopezi (DeSantis) (Hymenoptera: Encyrtidae) in Africa. Bull. Ent. Res. 77, (in press).Google Scholar
Ritchie, J. T. (1972) Model for predicting evaporation from a row crop with incomplete cover. Water Resource Res. 8, 12041213.CrossRefGoogle Scholar
She, H. D. N. (1985). The bioecology of the predator Hyperaspis jucunda Muls. (Coleoptera: Coccinellidae) and the temperature responses of its prey, the cassava mealybug Phenacoccus manihoti Mat.-Ferr. (Homoptera: Pseudococcidae). Ph.D. thesis, Univ. Ibadan, Nigeria, 300 pp.Google Scholar
Vansickle, J. (1977) Attrition in distributed delay models. IEEE Trans. Syst., Man, and Cybern. 7, 635638.Google Scholar
Wang, Y. H., Gutierrez, A. P., Oster, G. and Daxl, R. (1977) A population model for cotton growth and development: coupling cotton-herbivore interactions. Can. Ent. 109, 13591374.CrossRefGoogle Scholar
Wermelinger, B., Oertli, J. J. and Delucchi, V. (1985) Effect of host plant nitrogen fertilization on the biology of the two-spotted spider mite, Tetranychus urticae. Ent. exp. appl. 38, 2328.CrossRefGoogle Scholar