Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T07:58:25.924Z Has data issue: false hasContentIssue false

Differential effects of various African nightshade species on the fecundity and movement of Tetranychus evansi (Acari: Tetranychidae)

Published online by Cambridge University Press:  13 January 2012

L.K. Murungi*
Affiliation:
Jomo Kenyatta University of Agriculture and Technology (JKUAT), PO Box 62000-00200, Nairobi, Kenya International Centre of Insect Physiology and Ecology (icipe), PO Box 30772-00100, Nairobi, Kenya
M. Knapp
Affiliation:
International Centre of Insect Physiology and Ecology (icipe), PO Box 30772-00100, Nairobi, Kenya
D. Salifu
Affiliation:
International Centre of Insect Physiology and Ecology (icipe), PO Box 30772-00100, Nairobi, Kenya
J. Wesonga
Affiliation:
Jomo Kenyatta University of Agriculture and Technology (JKUAT), PO Box 62000-00200, Nairobi, Kenya
A. Nyende
Affiliation:
Jomo Kenyatta University of Agriculture and Technology (JKUAT), PO Box 62000-00200, Nairobi, Kenya
P. Masinde
Affiliation:
Jomo Kenyatta University of Agriculture and Technology (JKUAT), PO Box 62000-00200, Nairobi, Kenya
B. Torto
Affiliation:
International Centre of Insect Physiology and Ecology (icipe), PO Box 30772-00100, Nairobi, Kenya
Get access

Abstract

The tomato red spider mite Tetranychus evansi Baker & Pritchard is a serious pest of solanaceous plants worldwide. Management of this oligophagous pest in African nightshades has been a challenge to smallholder African farmers due to its high reproductive rate and rapid development of resistance to synthetic pesticides. The aim of the present study was to determine the influence of leaf trichomes on T. evansi by comparing its fecundity and movement on the leaf surfaces of five African nightshade species, namely Solanum sarrachoides Sendter, S. villosum Miller, S. tarderemotum Bitter, S. americanum Miller and S. scabrum Miller. Data were recorded in the laboratory at 23 ± 1°C, 50–70% relative humidity and a 12 h light:12 h dark photoperiod for the effect of trichome type and density of the abaxial leaf surface on mite fecundity. Distances travelled by mites on the leaf surface from the edge of a thumbtack pin inserted on the leaf were also recorded. Different trichomes, glandular and non-glandular types, were identified. There was a significant negative correlation of fecundity and distance walked by mites with the density of glandular trichomes. Significantly fewer eggs were laid on S. sarrachoides in comparison with the other Solanum species. The distance walked by mites was also significantly shorter in this species, indicating that higher densities of glandular trichomes interfere with mite movements. These results suggest that African nightshade genotypes differ in their levels of resistance to T. evansi, which is partially associated with differences in trichome types and their densities.

Type
Research Paper
Copyright
Copyright © ICIPE 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alba, J. M., Montserrat, M. and Fernández-Muñoz, R. (2009) Resistance to the two-spotted spider mite (Tetranychus urticae) by acylsucroses of wild tomato (Solanum pimpinellifolium) trichomes studied in a recombinant inbred line population. Experimental and Applied Acarology 47, 3547.CrossRefGoogle Scholar
Chatzivasileiadis, E. A., Boon, J. J. and Sabelis, M. W. (1999) Accumulation and turnover of 2-tridecanone in Tetranychus urticae Koch and its consequences for resistance of wild and cultivated tomatoes. Experimental and Applied Acarology 23, 10111021.CrossRefGoogle Scholar
Chatzivasileiadis, E. A. and Sabelis, M. W. (1997) Toxicity of methyl ketones from tomato trichomes to Tetranychus urticae Koch. Experimental and Applied Acarology 21, 473484.CrossRefGoogle Scholar
Duverney, C. and Ngueye-Ndiaye, A. (2005) Essais préliminaires pour limiter les dégâts de Tetranychidae sur les cultures maraîchères dans le Sine-Saloum (Sénégal). Poster presented at the Deuxième colloque international sur les acariens des cultures, AFPP Paris, Montpellier, 24–25 October 2005.Google Scholar
Edmonds, J. M. and Chweya, J. A. (1997) Black Nightshades: Solanum nigrum L. and Related Species: Promoting the Conservation and Use of Underutilized and Neglected Crops. International Plant Genetic Resources Institute (IPGRI), Rome.Google Scholar
Fernandes, G. W. (1994) Plant mechanical defenses against insect herbivory. Revista Brasileira de Entomologia 38, 421433.Google Scholar
Fiaboe, K. K. M., Fonseca, R. L., de Moraes, G. J., Ogol, C. K. P. O. and Knapp, M. (2006) Identification of priority areas in South America for exploration of natural enemies for classical biological control of Tetranychus evansi (Acari: Tetranychidae) in Africa. Biological Control 38, 373379.CrossRefGoogle Scholar
Griesbach, R. J., Neal, J. W. J. and Bentz, J. (2002) Arthropod resistance in Petunia ecotypes with glabrous leaves. HortScience 37, 383385.CrossRefGoogle Scholar
Gurr, G. M. and McGrath, D. (2002) Foliar pubescence and resistance to potato moth, Phthorimaea operculella in Lycopersicon hirsutum. Entomologia Experimentalis et Applicata 103, 3541.CrossRefGoogle Scholar
Handley, R., Ekbom, B. and Agren, J. (2005) Variation in trichome density and resistance against a specialist insect herbivore in natural populations of Arabidopsis thaliana. Ecological Entomology 30, 284292.CrossRefGoogle Scholar
Kennedy, G. G. (2003) Tomato, pests, parasitoids, and predators: tritrophic interactions involving the genus Lycopersicon. Annual Review of Entomology 48, 5172.CrossRefGoogle ScholarPubMed
Larkin, J. C., Young, N., Prigge, M. and Marks, M. D. (1996) The control of trichome spacing and number in Arabidopsis. Development 122, 9971005.CrossRefGoogle ScholarPubMed
Luckwill, L. C. (1943) The genus Lycopersicon. An historical, biological, and taxonomic survey of the wild and cultivated tomatoes. Aberdeen University Studies, Scotland 120, 144.Google Scholar
Luczynski, A., Isman, M. B., Raworth, D. A. and Chan, C. K. (1990) Chemical and morphological factors of resistance against the two-spotted spider mite in beach strawberry. Journal of Economic Entomology 83, 564569.CrossRefGoogle Scholar
Maluf, W. R., Inoue, I. F., Ferreira, R. P. D., Gomes, L. A. A., Castro, E. M. and Cardoso, M. G. (2007) Higher glandular trichome density in tomato leaflets and repellence to spider mites. Pesquisa Agropecuária Brasileira 42, 12271235.CrossRefGoogle Scholar
Migeon, M., Ferragut, F., Escudero-Colomar, A. L., Fiaboe, K., Knapp, M., de Moraes, G. J., Ueckermann, E. and Navajas, M. (2009) Modeling the potential distribution of the invasive tomato red spider mite, Tetranychus evansi (Acari: Tetranychidae). Experimental and Applied Acarology 48, 199212.CrossRefGoogle Scholar
Moraes, G. J. D., McMurtry, J. A. and Baker, E. W. (1987) Redescription and distribution of the spider mites Tetranychus evansi and T. marianae. Acarologia 28, 333334.Google Scholar
Murungi, L. K., Nyende, B., Wesonga, J., Masinde, P. and Knapp, M. (2010) Effect of African nightshade species (Solanales: Solanaceae) on developmental time and life table parameters of Tetranychus evansi (Acari: Tetranychidae). Experimental and Applied Acarology 52, 1927.CrossRefGoogle ScholarPubMed
Peters, K. M. and Berry, R. E. (1980) Effect of hop leaf morphology on two spotted spider mite. Journal of Economic Entomology 73, 235238.CrossRefGoogle Scholar
R-Development-Core-Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing (WWW document). Available at:http://www.R-project.org/.Google Scholar
Rasmy, A. H. (1985) The biology of two spotted spider mite Tetranychus urticae as affected by resistant solanaceous plants. Agriculture Ecosystems and Environment 13, 325328.CrossRefGoogle Scholar
Saunyama, I. G. M. and Knapp, M. (2003) The effects of pruning and trellising of tomatoes (Lycopersicon esculentum Mill.) on red spider mite (Tetranychus evansi Baker and Pritchard) incidence and crop yield in Zimbabwe. African Crop Science Journal 11, 269277.Google Scholar
Schilling, E. E. and Andersen, R. N. (1990) The black nightshades (Solanum section Solanum) of the Indian subcontinent. Botanical Journal of the Linnean Society 102, 253259.CrossRefGoogle Scholar
Schippers, R. R. (2000) African Indigenous Vegetables: An Overview of the Cultivated Species. Natural Resources Institute/ACP-EU Technical Centre for Agricultural and Rural Cooperation, Catham.Google Scholar
Sibanda, T., Dobson, H. M., Cooper, J. F., Manyangarirwa, W. and Chiimba, W. (2000) Pest management challenges for smallholder vegetable farmers in Zimbabwe. Crop Protection 19, 807815.CrossRefGoogle Scholar
Simmons, A. T. and Gurr, G. M. (2005) Trichomes of Lycopersicon species and their hybrids: effects on pests and natural enemies. Agriculture and Forest Entomology 7, 265276.CrossRefGoogle Scholar
Simmons, A. T., Gurr, G. M., McGrath, D., Nicol, H. I. and Martin, P. M. (2003) Trichomes of Lycopersicon spp. and their effect on Myzus persicae (Sulzer) (Hemiptera: Aphididae). Australian Journal of Entomology 42, 373378.CrossRefGoogle Scholar
Valverde, P. L., Fornoni, J. and Núñez-Farfán, J. (2001) Defensive role of leaf trichomes in resistance to herbivorous insects in Datura stramonium (Solanaceae). Journal of Evolutionary Biology 14, 424432.CrossRefGoogle Scholar
Van Haren, R. J. F., Steenhuis, M. M., Sabelis, M. W. and De Ponti, O. M. B. (1987) Tomato stem trichomes and dispersal success of Phytoseiulus persimilis relative to its prey Tetranychus urticae. Experimental and Applied Acarology 3, 115121.CrossRefGoogle Scholar
Weston, P. A. and Snyder, J. C. (1990) Thumbtack bioassay: a quick method for measuring plant-resistance to two-spotted spider mites (Acari: Tetranychidae). Journal of Economic Entomology 83, 500504.CrossRefGoogle Scholar
Wosula, E. N., Knapp, M. and Agong, S. G. (2009) Resistance to Tetranychus evansi in Lycopersicon esculentum × L. hirsutum var. glabratum hybrids. Journal of Horticultural Science and Biotechnology 84, 360364.CrossRefGoogle Scholar