Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T01:46:11.416Z Has data issue: false hasContentIssue false

Electrophoretic analysis of Trypanosoma brucei sub-group stocks from cattle, tsetse and patients from Lambwe Valley, Western Kenya

Published online by Cambridge University Press:  19 September 2011

L. H. Otieno
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), P. O. Box 30772, Nairobi, Kenya
N. Darji
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), P. O. Box 30772, Nairobi, Kenya
P. Onyango
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), P. O. Box 30772, Nairobi, Kenya
Get access

Abstract

Trypanosoma brucei stocks (43) isolated from man, cattle and tsetse, all coming from a small area of Lambwe Valley, in Kenya were characterized using isoenzyme analysis. The tsetse isolates revealed the largest number of zymodemes, indicating a lot of heterogeneity among these isolates. Cluster analysis of all the trypanosomes characterized showed that the organisms could be grouped into three distinct trypanosome types; human, cattle and tsetse. The human type was represented in ail the three groups. This was not the case either with the cattle nor the tsetse T. brucei type. T. brucei zymodeme which was found to be predominant during the 1980 outbreak of sleeping sickness was not observed this time round. It is suggested that this zymodeme was either unstable and had changed or it had been eliminated during the insecticides ground spraying operations against G. pallidipes. It is concluded that the heterogeneity observed among the fly isolates is an adaptive mechanism for survival of trypanosomes.

Résumé

Les provisions de 43 T. brucei ont été isolés de humaines, les bétail et les tsé-tsé entre 1985 et 1987, dans la vallée du Lambwe, au Kenya. L'analyse de l'isoenzyme de 11 enzyme a révélée un hétérogénéité considérable entre tous les échantillons, et les échantillons de tsé-tsé étaient les plus diverses. L'analyse de groupe de les relations entre les échantillons ont indiques que les organisms peuvent être grouper en trois types majeurs en correspondant de leurs origins dans les humaines, les cheveaux et les tsé-tsé. Le type humain, qui était représente dans tous les trois groupes, était les moins différent. Au contraire, la plupart des échantillons de cheveaux et de tsé-tsé ont étaient représentés dans les autres groupes. Le zymodème precis de T. brucei, qui existait pendant les manifestation de la maladie du someil, n'est pas observé. Ce zymodème peut avoir changé ce isoenzyme, ou il est éliminé par le groupe récent de l'opération de vaporiser l'insecticide contre G. pallidipes. En gise de conclusion, l'hétérogénéité qui était observé entre les échantillons de mouch est un mechanism adaptive pour la survivance de ce trypanosome.

Type
Research Article
Copyright
Copyright © ICIPE 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allsopp, R. and Baldry, D. A. T. (1972) A general description of the Lambwe Valley area of South Nyanza District, Kenya. Bull. WHO 47, 691697.Google ScholarPubMed
Allsopp, R., Baldry, D. A. T. and Rodrigues, (1972) The influence of game animals on the distribution and feeding habits of Glossina pallidipes in the Lambwe Valley. Bull. WHO 47, 795809Google ScholarPubMed
Baldry, D. A. T. (1972) A history of Rhodesian sleeping sickness in the Lambwe Valley. Bull. WHO 47, 699718Google ScholarPubMed
Challier, A. and Laveissiere, C. (1973) Un nouveau piege pour la capture des glossines (Glossina: Diptera) description et assais sur le terrain. Cah. ORSTOM Ser. Entomol. Med. Parasitol. 11, 251.Google Scholar
Gashumba, J. K., Baker, R. D. and Godfrey, D. G. (1988) Trypanosoma congolense: The distribution of enzymic variants in Eastand West Africa. Parasitology 96, 475–86.CrossRefGoogle Scholar
Gibson, W. C. and Miles, M. A. (1985) Application of new technologies to epidemiology. Br. Med. Bull. 41, 115121.CrossRefGoogle ScholarPubMed
Gibson, W. C., Mehlitz, D., Lanham, S. M. and Godfrey, D. G. (1978) The identification of Trypanosoma brucei in Liberian pigs and dogs by isoenzymes and by resistance to human plasma. Tropenmed. Parasitol. 29, 335345.Google ScholarPubMed
Gibson, W. C. and Gashumba, J. K. (1983) Isoenzyme characterization of some Trypanozoon stocks from a recent trypanosomiasis epidemic in Uganda. Trans. R. Soc. Trop. Med. Hyg. 77, 114118.CrossRefGoogle ScholarPubMed
Gibson, W. C. and Wellde, B. T. (1985) Characterization of Trypanozoon stocks from the South Nyanza sleeping sickness focus in Western Kenya. Trans. R. Soc. Trop. Med. Hyg. 79, 671676.CrossRefGoogle ScholarPubMed
Gibson, W. C., Marshall, T. F. de C. and Godfrey, D. G. (1980) Numerical analysis of enzyme polymorphism. A new approach to the epidemiology and taxonomy of trypanosomes of the subgenus Trypanozoon. Adv. Parasitol. 18, 175246.CrossRefGoogle Scholar
Godfrey, D. G., Scott, C. M., Gibson, W. C., Mehlitz, D. and Zillman, U. (1987) Enzyme polymorphism and identity of Trypanosoma brucei gambiense. Parasitology 94, 337347.CrossRefGoogle ScholarPubMed
Lamprey, H. F., Glasgow, J. P., Lee-Jones, F. and Weitz, B. (1962) A simultaneous census of the potential and actual food sources of the tsetse fly Glossina swynnertoni Austen. J. Anim. Ecol. 31, 151156.CrossRefGoogle Scholar
Lanham, S. M. and Godfrey, D. G. (1970) Isolation of salivarian trypanosomes from man and othermammals using DEAE-cellulose. Exp. Parasitol. 28, 521.CrossRefGoogle ScholarPubMed
Lumsden, W. H. R. (1969) Some currentproblems in the sero-immunology of trypanosomiasis in relation to the epidemiology and control of the disease. Bull. WHO 40, 871878.Google Scholar
Knowles, G., Betschart, B., Kukla, B. A., Scott, J. R. and Majiwa, P. A. O. (1988) Genetically discrete populations of Trypanosoma congolense from livestock on the Kenyan Coast. Parasitology 96, 461474.CrossRefGoogle ScholarPubMed
Mehlitz, D., Zillman, U., Scott, C. M. and Godfrey, D. G. (1982) Epidemiological studies on the animal reservoir of gambiense sleeping sickness. (IV) Characterization of Trypanozoonstocks by isoenzymes and sensitivity to human serum. Tropenmed. Parasitol. 23, 113118.Google Scholar
Otieno, L. H. and Darji, N. (1985) Characterization of potentially man-infective Trypanosom brucei from an endemic area of sleeping sickness in Kenya. Trop. Med. Parasitol. 36, 123126.Google Scholar
Otieno, L. H. and Darji, N. (1987) The investigation of Trypanosoma brucei isolates obtained from Glossina pallidipes in South Nyanza, Kenya. J. Trop. Med. Hyg. 90, 259263.Google ScholarPubMed
Turner, D. A. (1987) The population ecology of Glossina pallidipes Austen (Diptera: Glossinidae) in the Lambwe Valley, Kenya. I. Feeding behaviour and activity patterns. Bull, entomol. Res. 77, 317333.Google Scholar
Vickerman, K. (1986) Clandestine sex in trypanosomes. Nature 322, 113114.CrossRefGoogle ScholarPubMed
Willett, K. C., Lambrecht, F. L. and Wilson, S. G. (1965) Trypanosomiasis and tsetse in the Nyanza region, Kenya. Joint WHO/FAO African Trypanosomiasis Information Service Report (Unpublished document).Google Scholar
Young, C. J. and Godfrey, D. G. (1983) Enzyme polymorphism and the distribution of Trypanosoma congolense isolates. Ann. Trop. Med. Parasitol. 77, 467481.CrossRefGoogle ScholarPubMed