Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T16:02:06.177Z Has data issue: false hasContentIssue false

Etude de variations des paramètres démographiques de Callosobruchus maculatus (F.) et de ses parasitoïdes, Dinarmus basalis (Rond.) et Eupelmus vuilleti (Crwf.), sur le niébé dans une perspective de lutte biologique

Published online by Cambridge University Press:  19 September 2011

A. Sanon
Affiliation:
Laboratoire d'Entomologie Appliquée, Faculté des Sciences et Techniques Université de Ouagadougou, Burkina Faso
P. A. Ouedraogo
Affiliation:
Laboratoire d'Entomologie Appliquée, Faculté des Sciences et Techniques Université de Ouagadougou, Burkina Faso
Get access

Abstract

The parasitoids Dinarmus basalis Rond. (Hymenoptera: Pteromalidae) and Eupelmus vuilleti Crwf. (Hymenoptera: Eupelmidae) develop mainly on relatively old larvae and pupae of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) found in cowpea seeds. Therefore, it is possible to consider biological control against C. maculatus using these natural enemies. The intrinsic rates of increase for C. maculatus and the two parasitoids were determined during the dry season in the sub-humid area of Bobo-Dioulasso, Burkina Faso, from January to July 1995. Functional response was also analysed for D. basalis and E. vuilleti. At the beginning of the dry season, the cowpea weevil and both its natural enemy species had limited intrinsic rates of increase, attributed to the relatively low temperatures and low relative humidity thatprevail during this period. In March, when temperature and relative humidity began to rise, conditions were optimum for their reproduction and development. Dinarmus basalis showed the higher intrinsic rates of increase and parasitism through the study period. Analysis of the functional response revealed that fecundity and potential for parasitism of both parasitoids were density-related and varied with climatic conditions. However, D. basalis showed a more efficient response. This study has shown that the variations of climatic conditions such as temperature and relative humidity during the dry season significantly influence the development and reproduction of C. maculatus and its parasitoids. Dinarmus basalis appeared to be the better biological agent in controlling C. maculatus.

Résumé

Dinarmus basalis (Rond.) (Hymenoptera: Pteromalidae) et Eupelmus vuilleti (Crwf.) (Hymenoptera: Eupelmidae) sont deux parasitoïdes qui se développent aux dépens des larves des derniers stades et/ou des nymphes de la bruche du niébé, Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). La lutte biologique contre C. maculatus par l'utilisation de ces parasitoïdes est actuellement envisagée. Les capacités intrinsèques d'accroissement naturel (rm) de l'hôte et de ses parasitoïdes ainsi que les réponses fonctionnelles des deux hyménoptères ont été étudiées au cours de la saison sèche en zone sub-humide de Bobo-Dioulasso au Burkina Faso, de janvier à juillet 1995. Au début de la saison sèche, les trois espèces ont eu des capacités intrinsèques d'accroissement natures limitées en raison des conditions thermiques relativement basses et du faible taux d'humidité relative de l'air prévalant à cette période. A partir du mois de mars, avec l'augmentation de la température et de l'humidité relative de l'air, ces capacités d'accroissement ainsi que les taux de parasitisme sont devenu plus importants. Dans tous les cas, D. basalis présentait les plus forts taux d'accroissement intrinsèque et de parasitisme durant toute la période d'étude. L'analyse de la réponse fonctionnelle a montré que la fécondité des femelles ainsi que leurs capacités parasitaires sont de type densité dépendante et qu'elles varient avec les conditions climatiques aussi bien chez E. vuilleti que chez D. basalis. Cependant, D. basalis présente une réponse plus intense. Les résultats obtenus montrent l'importance des variations des facteurs climatiques notamment la température et l'humidité relative de l'air au cours de la saison sèche sur la reproduction et le développement des insectes étudiés. Dinarmus basalis possède les meilleures potentialités pour limiter l'évolution des effectifs de C. maculatus.

Type
Research Articles
Copyright
Copyright © ICIPE 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arbogast, R. T. (1984) Biological control of stored-product insects: Status and prospects, pp. 225238. In Insect Management for Food Storage and Processing (Edited by Baur, F. D.). The American Association of Cereal Chemist, Minnesota.Google Scholar
Arditi, R. (1979) Les composants de la prédation, les modèles proie-prédateur, et les cycles de populations naturelles. Thèse de Doctorat d'État, Université Paris VII.Google Scholar
Burnett, T. (1954) Influences of natural temperatures and controlled host densities on oviposition of an insect parasite. Physiol. Zoo. 27, 239248.CrossRefGoogle Scholar
Dabiré, L. C. (1992) Les méthodes traditionnelles de protection des stocks de niébé au Burkina Faso. Sahel PV-Info. 42, 713.Google Scholar
Finlayson, L. H. (1950) The biology of Cephalonomia waterstoni Gahan (Hymenoptera: Bethylidae) a parasite of Laemophloeus (Coleoptera: Cucujidae). Bull Entomol. Res. 41, 7997.Google Scholar
Flinn, P. W. (1991) Temperature-dependant functional response of the parasitoid Cephalonomia waterstoni (Hymenoptera: Bethylidae) attacking rusty grain beetle larvae. Environ. Entomol. 20, 872876.CrossRefGoogle Scholar
Flinn, P. W. and Hagstrum, D. W. (1990) Simulations comparing the effectiveness of various stored-grain management practices used to control Rhyzoptera dominica. Environ. Entomol. 19, 189198.CrossRefGoogle Scholar
Gauthier, N., Monge, J. P. and Huignard, J. (1996) Superparasitism and host discrimination in the solitary ectoparasitoid Dinarmas basalis. Entom. Exp. Appl. 79, 9199.CrossRefGoogle Scholar
Giga, D. P. and Smith, R. H. (1983) Comparative life history studies of four Callosobruchus species infesting cowpeas with special reference to Callosobruchas rhodesianus (Pic.) (Coleoptera: Bruchidae). J. Stored Prod. Res. 19, 189198.CrossRefGoogle Scholar
Gomez-Alvarez, L. E. (1980) Etudes de quelques aspects de la biologie d'un chalcidien Dinarmus basalis nécessaires à l'étude du taux sexuel. Thèse, Université F. Rabelais, Tours. 96 pp.Google Scholar
Hassel, M. P. (1978) The Dynamics of Arthropod Predator-Prey Systems. Princeton, New York, Princeton University Press, 229 pp.Google Scholar
Hassel, M. P. and May, R. M. (1973) Stability in insect host-parasite models, J. Anim. Ecol. 42, 693726.CrossRefGoogle Scholar
Hassel, M. P. and May, R. M. (1974) Aggregation of predators and insects parasites and its effect on stability, J. Anim. Ecol. 43, 567594.Google Scholar
Holling, C. S. (1959a) Some characteristics of simple types of predation and parasitism. Can. Entom. 91, 385398.Google Scholar
Holling, C. S. (1959b) The components of predation as revealed by a study of small mammal predation of the European sawfly. Can. Entom. 91, 293320.Google Scholar
Holling, C. S. (1966) The functional response of invertebrate predators to prey density. Memoirs of the Entomological Society of Canada 48, 186.Google Scholar
Howe, R. N. (1965) A summary of estimates of optimal and minimal conditions for population increase of some stored product insects, J. Stored Prod. Res. 1, 177184.CrossRefGoogle Scholar
Howe, R. N. and Curie, J. E. (1964) Some laboratory observations on the rates of development, mortality and oviposition of several species of Bruchidae breeding in stored pulses. Bulletin of Entomological Research 55, 437477.Google Scholar
Juliano, S. A. (1993) Nonlinear curve fitting: Predation and functional response curves, pp. 159182. In Design and Analysis of Ecological Experiments (Edited by Cheineir, S. M. and Gurevitch, J.). New York, Chapman and Hall.Google Scholar
Juliano, S. A. and Williams, F. M. (1985) Further difficulties in the analysis of functional-response experiments and a resolution. Can. Entomol. 117, 631640.Google Scholar
Juliano, S. A. and Williams, F. M. (1987) A comparison of methods for estimating the functional response parameters of the random predator equation, J. Anim. Ecol. 56, 641653.Google Scholar
Messenger, P. S. (1968) Bioclimatic studies of the aphid parasite Praon exsolehim. Effects of temperature on the functional response of females to varying host densities. Can. Entom. 100, 272277.Google Scholar
Monge, J. P. and Huignard, J. (1991) Population fluctuations of two bruchid species Callosobruchus maculatus Fab. and Bruchidius atrolineatus Pic. (Coleoptera: Bruchidae) and their parasitoids Dinarmus basalis (Rond) (Hymenoptera: Pteromalidae,) and Eupelmus vuilleti (Cwf) (Hymenoptera: Eupelmidae) in storage situation in Niger. Journal of African Zool. 105, 187196.Google Scholar
Murdoch, W. W. and Oaten, A. (1975) Predation and population stability. Adv. Ecol. Res. 9, 1125.Google Scholar
Ouédraogo, A. P. (1978) Etude de quelques aspects de la biologie de Callosobruchus maculatus F. (Coléoptère; Bruchidae) et de l'influence des facteurs externes stimulants (plante hôte et copulation) sur l'activité reproductrice de la femelle. Thèse de Doctorat de 3eCycle, Toulouse. 101 pp.Google Scholar
Ouédraogo, P. A. (1995) La bruche du niébé, Callosobruchus maculatus Fab. In Guide Phytosanitaire des Cultures du Burkina Faso. lére Ed. Agriculture Canada, ACDI 960/10325, 100–101.Google Scholar
Ouédraogo, P. A. et al. (1991) Importance of temperature and seed water content on the induction of imaginal polymorphism in Callosobruchus maculatus. Entomol. Exp. Appl. 59, 5966.CrossRefGoogle Scholar
Ouédraogo, P. A., Sanon, A., Sou, S., Monge, J. P., Tran, B., Credland, P. F. and Huignard, J. (1996) Influence of temperature and humidity on populations of Callosobruchus maculatus F. (Coleoptera: Bruchidae) and its parasitoid Dinarmus basalis (Rond.) (Hymenoptera: Pteromalidae) in two climatic zones of Burkina Faso. Bull. Entomol. Res. 86, 695702.Google Scholar
Riba, G. et Silvy, C. (1989) Combattre les ravageurs des cultures. Enjeux et Perspectives. INRA, Paris. 228 pp.Google Scholar
Sinha, R. N. (1973) Interrelations of physical chemical and biological variables in the deterioration of stored grains. In Grain Storage Part of System (Edited by Sinha, R. N. and Muvi, W. E.). Westport Avi.Google Scholar
Smartt, J. (1964) Pulses in human nutrition, pp. 96104. In Tropical Pulses. Longman, London.Google Scholar
Smith, L. (1994) Temperature influences functional response of Anisopteromalus calandrae parasitizing Maize weevil larvae in shelled corn. Ann. Entomol. Soc. Am. 87, 849855.CrossRefGoogle Scholar
Smith, L. and Press, J. W. (1992) Functional response of Anisopteromalus calandrae (Hymenoptera: Pteromalidae): Influence of host numbers versus host density. J. Entomol. Sci. 27, 375382.Google Scholar
Stanton, W. R. (1970) Les légumineuses à graines en Afrique. Publ. FAO. 199 pp.Google Scholar
Terrasse, C. (1986) Mise en évidence et hypothèse de régulation du stade de l'hôte, Callosobruchus maculatus F (Coleoptera: Bruchidae) et de sa taille sur le taux sexuel d'un de ses parasitoïdes Bruchocida vuilleti Cwf (Hymenoptera: Eupelmidae). Thèse, Université F. Rabelais, Tours. 187 pp.Google Scholar
Terrasse, C. et Rojas-Rousse, D. (1986) Distribution de la ponte et évitement du superparasitisme chez l'hyménoptère solitaire Bruchocida vuilleti Crw (Hymenoptera: Eupelmidae), parasite des stades larvaires de son hôte, Callosobruchus maculatus F. (Coleoptera: Bruchidae). J. Appl Ent. 101, 243256.Google Scholar
Tricault, Y. (1995) Influence de la température et de l'hygrométrie sur l'évolution du système hôte-parasitoïde: Cas des espèces tropicales Callosobruchus maculatus et Dinarmus basalis. Rapport de D.E.A, Université François Rabelais, Tours, 28 pp.Google Scholar
Van Alebeek, F. A. N. (1994) The functional response of Uscana lariophaga Steffan (Hym.: Trichogrammatidae) under different egg distributions of its host Callosobruchus maculatus F. (Col.: Bruchidae). In Proceedings of the 6th Working Conference on Stored-Product Protection 2, 11521157.Google Scholar
Van Alebeek, F. A. N. (1991) Interspecific host discrimination by two solitary ectoparasitoids of immature stages of Bruchidae. Med. Fac, Landbouww Rijksuniv Gent 56/3b, 10111020.Google Scholar
Van Alebeek, F. A. N., Rojas-Rousse, B. and Leveque, L. (1993) Interspecific competition between Eupelmus vuilleti and Dinarmus basalis, two solitary ectoparasitoids of Bruchidae larvae and pupae. Entomol. Exp. Appl. 69, 2131.Google Scholar
Van Huis, A. (1991) Biological methods of bruchids control in the tropics: A review. Insect Sci. Applic. 12, 87102.Google Scholar
Van Lenteren, J. C. and Bakker, K. (1976) Functional responses in invertebrates. Netherlands J. Zool. 26, 567572.Google Scholar
Van Lenteren, J. C. and Bakker, K. (1978) Behavioral aspects of the functional responses of a parasite (Pseudeucoila bochei Weld) to its host (Drosophila melanogaster). Netherlands J. Zool. 28, 213233.Google Scholar
Williams, R. N. and Floyd, E. H. (1971) Effect of two parasites Anisopteromalus calandrae and Choetospila elegans, upon populations of the maize weevil under laboratory and natural conditions. J. Econ. Entomol. 64, 14071408.CrossRefGoogle Scholar