Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T19:44:01.729Z Has data issue: false hasContentIssue false

Evidence of Adaptation of Diamondback Moth, Plutella xylostella (L.), to Pea, Pisum sativum L.

Published online by Cambridge University Press:  19 September 2011

Bernhard Löhr
Affiliation:
Plant Health Division, International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi 00506, Kenya E-mail: Blohr@icipe.org
Ruth Gathu
Affiliation:
Plant Health Division, International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi 00506, Kenya E-mail: Blohr@icipe.org
Get access

Abstract

A strain of diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera: Plutellidae), adapted to peas was detected in 1999 in the export vegetable growing area south of Lake Naivasha in the Rift Valley Province of Kenya. The pea strain (DBM-P) was compared in laboratory studies to the normal crucifer strain (DBM-C). Whereas DBM-P performed comparably well on kales and peas, the cabbage strain (DBM-C) suffered heavy mortality on peas. Out of the 250 DBM-C first instars, only six reached adult stage on pea. In addition, larval development was prolonged by five days on peas as compared to kale, and larval growth was greatly reduced. Pupal weights of DBM-C survivors on pea were significantly lower (3.8 mg) than of DBM-P (4.6 mg) and those of both strains on kale (5.7 and 5.3 mg, respectively). Neonate larvae of the pea strain mined on both kale and pea but both the proportion of larvae mining and the number of mining days were lower than for DBM-C on kale. The latter failed completely to mine on pea.

A laboratory culture was started with the DBM-C survivors on pea and the performance of the progeny compared on kale and pea in three additional generations of selection. Larval survival increased from 2.4% in the first generation to 28.6%, 41.3% and 49.7% in the second, third and fourth generation, respectively. Pupal weight of larvae reared on pea increased with each generation of selection, but it remained significantly lower than of larvae reared on kale. In spite of the large differences in larval mining on the two host plants, performance on peas was not related to the ability of DBM-C to mine on pea but rather to the ability to initiate feeding without the normal stimuli present in crucifers. Pupal mortality for larvae from both hosts was similar when larvae of equal weight were compared, suggesting acceptable suitability of pea for larval development once the new host is accepted. The implications of these findings on adaptability of DBM to plants beyond its normal host range are discussed.

Résumé

Une souche de la fausse-teigne des crucifères, Plutella xylostella (L.) (Lepidoptera: Plutellidae), adaptée au pois, a été observée dans une zone de cultures maraîchères d'exportation au sud du Lac Naïvasha dans la province de la Rift Valley au Kenya, en 1999. La souche élevée sur le pois (DBM-P) est comparée à la souche normale élevée sur le chou (DBM-C) en laboratoire. Bien que les performances de la souche DBM-P soient comparables sur chou et sur pois, la souche (DBM-C) a subi une mortalité considérable sur le pois; sur 250 larves du premier stade, six larves seulement ont pu atteindre le stade adulte. Par ailleurs, le développement larvaire est plus long de 5 jours sur le pois par rapport au chou. La croissance larvaire est aussi considérablement réduite. Le poids des chrysalides de la souche DBM-C élevée sur pois est significativement inférieur (3,8 mg) à celui des chrysalides de la souche DBM-P (4,6 mg), ainsi qu'à celui des chrysalides des deux souches élevées sur chou (5,7 et 5,3 mg, respectivement). Les larves néonates de la souche adaptée au pois ont miné les plants de chou et de pois, mais la proportion de larves mineuses et le nombre de jours pour miner sont inférieurs à ceux de la souche DBM-C sur chou. Cette derniere a été incapable de miner le pois. Un élevage a été mis en place au laboratoire à partir des survivants de la souche DBM-C élevés sur pois et les performances des descendants ont été comparées à celles obtenues sur chou et sur pois pendant trois generations. La survie des chenilles a augmenté de 2,4% au cours de la première génération et de 28,6%, 41,3% et 49,7% au cours des générations suivantes. Sur pois, le poids des chrysalides a augmenté après chaque generation; il est cependant resté inférieur à celui des chrysalides obtenues sur chou. En dépit d'énormes différences dans la capacité des larves à miner les deux plantes-hôtes, les performances sur pois ne sont pas liées à la capacité de la souche DBM-C à miner le pois mais plutôt à la capacité de commencer à s'alimenter sans les stimuli normaux présents dans les cruciferes. La mortalité des chrysalides sur les deux plantes est identique lorsque les larves de même poids sont comparées. Ce résultat suggère que le pois convient bien au développement larvaire dès lors que le nouvel hôte est accepté. On discute des consequences de ces résultats sur l'adaptation de la fausse-teigne des crucifères à des plantes non hôtes.

Type
Research Articles
Copyright
Copyright © ICIPE 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abro, G. H., Jayo, A. L. and Syed, T. S. (1994) Ecology of diamondback moth, Plutella xylostella (L.) in Pakistan 1. Host plant preference. Pakistan J. Zool. 26, 3538.Google Scholar
Anonymous (1971) Outbreaks and new records. FAO Plant Prot. Bull. 19, 8992.Google Scholar
Berlocher, S. H. and Feder, J. L. (2002) Sympatric speciation in phytophagous insects: Moving beyond controversy? Annu. Rev. Entomol. 47, 773815.Google Scholar
Chen, J. S. and Sun, C. N. (1986) Resistance of diamondback moth (Lepidoptera: Plutellidae) to a combination of fenvalerate and piperonyl butoxide. J. Leon. Entomol. 79, 2230.Google Scholar
Dickson, M. H., Eckenrode, C. J. and Blamble, A. E. (1984) NYIR 9602, NYIR 9605 and NYIR 8329, lepidopterous pest-resistant cabbage breeding lines. HortScience 19, 311312.CrossRefGoogle Scholar
Eigenbrode, C. J., Dickson, M. H. and Lin, J. (1986) Resistance in crucifers to diamondback moth and other lepidopterous pests, pp. 129136. In Diamondback Moth Management: Proceedings of the First International Workshop (Edited by Talekar, N. S. and Griggs, T. D.). Asian Vegetable Research and Development Centre, Shanhua, Taiwan.Google Scholar
Eigenbrode, S. D. and Shelton, A. M. (1990) Behaviour of neonate diamondback moth larvae (Lepidoptera: Plutellidae) on glossy-leafed resistant genotypes of Brassica oleracea L. Environ. Entomol. 19, 15661571.Google Scholar
Eigenbrode, S. D. and Shelton, A. M. (1992) Survival and behaviour of Plutella xylostella larvae on cabbages with leaf waxes altered by treatment with S-ethyl dipropylthiocarbomate. Entomol. Exp. Appl. 62, 139145.Google Scholar
Eigenbrode, S. D., Stoner, K. A., Shelton, A. M. and Kain, W. C. (1992) Characteristics of glossy leaf waxes associated with resistance to diamondback moth in Brassica oleracea. J. Econ. Entomol. 84, 16091618.CrossRefGoogle Scholar
Eigenbrode, S. D. and Espelie, K. E. (1995) Effects of plant cuticular lipids on insect herbivores. Annu. Rev. Entomol. 40, 171194.Google Scholar
Eigenbrode, S. D. and Pillai, S. K. (1998) Neonate Plutella xylostella responses to surface wax components of a resistant cabbage (Brassica oleracea). J. Chem. Ecol. 24, 16111627.Google Scholar
Feder, J. L. (1998) The apple maggot fly, Rhagoletis pomonella: Flies in the face of conventional wisdom about speciation?, pp. 130144. In Endless Form: Species and Speciation (Edited by Howard, D. J. and Berlocher, S. H.). Oxford University Press, London/New York.Google Scholar
Feng, H. T. and Sun, C. N. (1978) Diamondback moth resistance to methomyl in Taiwan. Science in Agriculture 26, 135138.Google Scholar
Gupta, P. D. and Thorsteinson, A. J. (1960a) Food plant relationship of the diamondback moth (Plutella maculipennis (Curt.)). I. Gustation and olfaction in relation to botanical specificity of the larva. Entomol. Exp. Appl. 3, 241250.Google Scholar
Gupta, P. D. and Thorsteinson, A. J. (1960b) Food plant relationship of diamondback moth, Plutella maculipennis (Curt.). II. Sensory relationship of oviposition of the adult female. Entomol. Exp. Appl. 3, 305314.Google Scholar
Harrison, P. K. and Brubaker, R. W. (1943) The relative abundance of cabbage caterpillars on cole crops grown under similar conditions. J. Econ. Entomol. 36, 589592.CrossRefGoogle Scholar
Kao, C. H., Hung, C. F. and Sun, C. N. (1989) Parathion and methyl parathion resistance in diamondback moth (Lepidoptera: Plutellidae) larvae. J. Econ. Entomol. 82, 12991304.Google Scholar
Lin, J., Dickson, M. H. and Eckenrode, C. J. (1984) Resistance of Brassica lines to the diamondback moth (Lepidoptera: Yponomeutidae) in the field, and inheritance of resistance. J. Econ. Entomol. 77, 12931296.Google Scholar
Lin, J., Eigenbrode, C. J. and Dickson, M. H. (1983) Variation in Brassica oleracea resistance to diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 76, 14231427.Google Scholar
Lohr, B. L. (2001) Diamondback moth on peas, really. Biocontr. News Info. 19, 38N39N.Google Scholar
Moore, A. A. and Tabashnik, B. E. (1989) Leg autotomy of adult diamondback moth (Lepidoptera: Plutellidae) in response to tarsal contact with insecticide residues. J. Econ. Entomol. 82, 381384.CrossRefGoogle Scholar
Noppun, V., Miyata, T. and Saito, T. (1987) Selection for resistance of the diamondback moth, Plutella xylostella with fenvalerate. J. Pest. Sci. 12, 265268.Google Scholar
Peng, F. S., Yao, M. C., Hung, C. F. and Sun, C. N. (1988) Teflubenzuron resistance in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 81, 12771282.Google Scholar
Reichardt, A.N. (1919) Bull, of Sub-Section, Control of Plant Pests. Petrograd Committee of Rural Economy, Petrograd. 1, 6–77.Google Scholar
SAS Institute (1990) SAS/STAT Users Guide. Version 6, 4th Edition. SAS Institute, Carey, NC.Google Scholar
Sun, C. N., Chi, H. and Feng, H. T. (1978) Diamondback moth resistance to diazinon and methomyl in Taiwan, J. Econ. Entomol. 71, 551554.CrossRefGoogle Scholar
Tabashnik, B. E. and Cushing, N. L. (1989) Quantitative genetic analysis of insecticide resistance: Variation in fenvalerate tolerance in a diamondback moth (Lepidoptera: Plutellidae) population. J. Econ. Entomol. 82, 510.Google Scholar
Tabashnik, B. E., Cushing, N. L. and Johnson, M. W. (1987) Diamondback moth (Lepidoptera: Plutellidae) resistance to insecticides in Hawaii: Intra-Island variation and cross-resistance. J. Econ. Entomol. 80, 10911099.Google Scholar
Talekar, N. S. and Shelton, A. M. (1993) Biology, ecology, and management of the diamondback moth. Annu. Rev. Entomol. 38, 275301.CrossRefGoogle Scholar
Talekar, N. S., Yang, H. C., Lee, S. T., Chen, B. S. and Sun, L. Y. (1985) Annotated bibliography of diamondback moth. Asian Veg. Res. Dev. Centre Pub. 85–229, Shanhua, Taiwan, 469 pp.Google Scholar