Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T04:36:50.743Z Has data issue: false hasContentIssue false

Expression and stability of soybean resistance to agromyzid beanflies

Published online by Cambridge University Press:  19 September 2011

Hsih-Shin Chiang
Affiliation:
Department of Entomology, University of Wisconsin, Madison, WI 53706, U.S.A.
Dale M. Norris
Affiliation:
Department of Entomology, University of Wisconsin, Madison, WI 53706, U.S.A.
Get access

Abstract

Plants express evolutionary adaptations in response to overall environmental stresses (selection pressures), of which insect infestation usually represents only a minor component. The majority of insect-host plant relationships involves adaptations of insect species to existing plants. Over time, plants have evolved a variety of physical and chemical defence mechanisms against environmental stresses. Only some of these are active against insects, and then not against all species. Plants rarely seem to evolve defences specifically against insects. Parameters of plant resistance to parasites are classified as constitutive or inducible. Soybean resistance to agromyzid stem-miners involves both constitutive and inducible components. Expression of such resistance parameters involves controls ranging from single genes (e.g. for trichome traits) to various combinations of genes (e.g. for the metabolic pathway for phenyl-propanoids). Environmental stresses (e.g. high illumination) especially affect the expression of resistance parameters which involve dynamic metabolic pathways. Soybean (Glycine soja) resistance to beanflies is an example of ‘horizontal’ resistance. Thus, the expected stability is long-term. Such stability is attributable to its major parameters being fundamental components of the soybean's primary and secondary growth and differentiation. These kinds of parameters are major products of the soybean's successful evolutionary experience at survival.

Résumé

Les plantes manifestent des adaptations évolutionnaires en réponse aux forces générales de l'environnement (pression de la sélection). L'infestation par les insectes n'y représente normalement qu'une partie constituante d'importance secondaire. La majorité des rapports entre les insectes et les plantes-hôtes comprend des adaptations des espèces d'insectes aux plantes existantes. À la longue, les plantes ont développé one variété de systèmes défensifs physiques et chimiques contre les forces de l'environnement. Seuls quelques-uns de ces systèmes défensifs agissent contre les insectes, mais non contre toutes les espèces d'insectes. Les plantes ne semblent que rarement développer des systèmes de défense spécifiques aux insectes. Les paramètres de la résistance végétale aux parasites se classifient comme constitutifs ou induisibles. La résistance du soja aux larves mineuses des tiges (celles de l'espèce Agromyzidae) implique à la fois des parties constitutives et induisibles. L'expression de tels paramètres de résistance comprend des contrôles qui vont des gènes singuliers (ex. les trichomes) à des gènes aux combinaisons variées (ex. le sentier métabolique des composants secondaires). Les pressions de l'environment atteignent surtout l'expression des paramètres de résistance qui comportent des sentiers métaboliques dynamiques. La résistance du soja aux mouches de l'espèce Agromyzidae est un exemple de la résistance ‘horizontale’. Ainsi la stabilité attendue est de longue durée. Une telle stabilité est imputée au fait que ses paramètres principaux sont des composants fondamentaux de la pousse et de la différentiation primaires et secondaires due soja. De tels paramètres sont les produits majeurs de l'expérience évolutionnaire satisfaisante du soja a l'état de survie.

Type
Section II: Factors influencing the expression and stability of host plant resistance
Copyright
Copyright © ICIPE 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anonymous (1977) Progress Report for 1977. Asian Vegetable research and Development Center, Shanhua, Taiwan, Republic of China.Google Scholar
Bell, A. A. (1981) Biochemical mechanisms of disease resistance. A. Rev. PL Physiol. 32, 3181.CrossRefGoogle Scholar
Bernard, R. L. and Singh, B. B. (1969) Inheritance of pubescence type in soybeans: glabrous, curly, dense, sparse, and puberulent. Crop Sci. 9, 192197.CrossRefGoogle Scholar
Chiang, H. S. and Norris, D. M. (1983a) Morphological and physiological parameters of soybean resistance to agromyzid beanflies. Environ. Ent. 12, 260265.CrossRefGoogle Scholar
Chiang, H. S. and Norris, D. M. (1983b) Physiological and anatomical parameters of soybean resistance to agromyzid beanflies. Entomologia exp. appl. 33, 203212.CrossRefGoogle Scholar
Chiang, H. S. and Norris, D. M. (1983c) Phenolic and tannin contents as related to anatomical parameters of soybean resistance to agromyzid beanflies. J. agric. Fd Chem. 31, 726730.CrossRefGoogle Scholar
Chiang, H. S. and Norris, D. M. (1984) ‘Purple stem,’ a new indicator of soybean stem resistance to bean flies (Diptera: Agromyzidae). J. econ. Ent. 77, 121125.CrossRefGoogle Scholar
Chiang, H. S. and Talekar, N. S. (1980) Identification of sources of resistance to the beanfly and two other agromyzid flies in soybean and mungbean. J. econ. Ent. 73, 197199.CrossRefGoogle Scholar
Dethier, V. G. (1970) Chemical interactions between plants and insects. In Chemical Ecology (Edited by Sondheimer, E. and Simeone, J. B.), pp. 83102. Academic Press, New York.CrossRefGoogle Scholar
Doley, D. (1979) Effects of shade on xylem development in seedlings of Eucalyptus grandis Hill. Ex. Maiden. New Phytol. 82, 545555.CrossRefGoogle Scholar
Esau, K. (1965) Plant Anatomy, p. 167. Wiley, New York.Google Scholar
Fehr, W. R. and Caviness, C. E. (1977) Stages of soybean development. Special Report 80. Coop. Ext. Serv. Agric. Home Econ. Exp. Stn. Iowa State University, Ames, Iowa.Google Scholar
Hadley, H. H. and Hymowitz, T. (1973) Speciation and cytogenetics. In Soybeans: Improvement, Production and Uses (Edited by Caldwell, B. E.), pp. 97116. American Society of Agronomy, Madison, Wisconsin.Google Scholar
Hahlbrock, K. and Grisebach, H. (1979) Enzymic controls in the biosynthesis of lignin and flavonoids. A. Rev. Pl. Physiol. 30, 105130.CrossRefGoogle Scholar
Jermy, T. (1976) Insect-host plant relationship-coevolution or sequential evolution? In The Host-Plant in Relation to Insect Behavior and Reproduction (Edited by Jermy, T.), pp. 109114. Plenum Press, New York.CrossRefGoogle Scholar
Karasawa, K. (1936) Crossing experiment with Glycine soja and G. usuriensis. Jap. J. Bot. 8, 113118.Google Scholar
Kato, S. (1961) Taxonomic studies on soybean leaf and stem mining flies (Diptera, Agromyzidae) of economic importance in Japan, with descriptions of three new species. Bull. natn. Inst. agric. Sci. (C) 13, 171206.Google Scholar
Kogan, M. and Paxton, J. (1983) Natural inducers of plant resistance to insects. In Plant Resistance to Insects (Edited by Hedin, P.), pp. 153–171. ACS Symposium Series 208. American Chemical Society, Washington.CrossRefGoogle Scholar
Lee, S. Y. (1976) Notes on some agromyzid flies destructive to soybeans in Taiwan. Formosan Sci. 30, 5462.Google Scholar
Margna, U. (1977) Control at the level of substrate supply—an alternative in the regulation of phenylpropanoid accumulation in plant cells. Phytochemistry 16, 419426.CrossRefGoogle Scholar
McClure, J. W. (1975) Physiology and function of flavonoids. In The Flavonoids (Edited by Harborne, J. B., Mabry, T. J. and Mabry, H.), pp. 9701055. Academic Press, New York.CrossRefGoogle Scholar
Norris, D. M. and Kogan, M. (1980) Biochemical and morphological bases of resistance. In Breeding Plants Resistance to Insects (Edited by Maxwell, F. G. and Jennings, P. R.), pp. 2362. Wiley, New York.Google Scholar
Ponti, O. M. B. de (1982) Plant resistance to insects: a challenge to plant breeders and entomologists. In Proceedings 5th International Symposium on Insect-Plant Relationships (Edited by Visser, J. H. and Minks, A. K.), pp. 337347. Pudoc, Wageningen, The Netherlands.Google Scholar
Price, M. L. and Butler, L. G. (1977) Rapid visual estimation and spectrophotometric determination of tannin content of sorghum grain. J. agric. Fd Chem. 25, 12681273.CrossRefGoogle Scholar
Price, P. W. (1975) Insect Ecology. Wiley, New York.Google Scholar
Reese, J. C. (1983) Nutrient-allelochemical interactions in host plant resistance. In Plant Resistance to Insects (Edited by Hedin, P.), pp. 231244. ACS Symposium Series 208. American Chemical Society, Washington.CrossRefGoogle Scholar
Singh, B. B., Hadley, H. H. and Bernard, R. L. (1971) Morphology of pubescence in soybeans and its relationship to plant vigor. Crop Sci. 11, 1316.CrossRefGoogle Scholar
Spencer, K. A. (1973) Agromyzidae (Diptera) of Economic Importance. Junk, The Hague, The Netherlands.CrossRefGoogle Scholar
Van der Plank, J. E. (1968) Disease Resistance in Plants. Academic Press, New York.Google Scholar