Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T15:55:14.945Z Has data issue: false hasContentIssue false

Growth inhibition of the cotton bollworm (Helicoverpa armigera) larvae by caffeoylquinic acids from the wild groundnut, Arachis paraguariensis

Published online by Cambridge University Press:  19 September 2011

F. M. Kimmins
Affiliation:
Natural Resources Institute, Chatham Maritime, Kent, ME4 4TB, UK
D. E. Padgham
Affiliation:
Natural Resources Institute, Chatham Maritime, Kent, ME4 4TB, UK
P. C. Stevenson
Affiliation:
Jodrell Laboratory, Royal Botanic Gardens, Kew, Surrey, TW9 3AB, UK
Get access

Abstract

The effect on the larval development of Helicoverpa armigera of caffeoylquinic acids and their structural units, caffeic acid and quinic acid, was evaluated. 5-Caffeoylquinic acid (5CQA) (syn. chlorogenic acid) significantly retarded larval development and increased the number of days to pupation at a concentration of 9 mM in an artificial diet, although final pupal weights were not severely affected. Caffeic acid and quinic acid also inhibited larval development although their effect was less marked. In all cases the effect of the compounds was dose-dependent. A mixture containing 5CQA, 3-caffeoylquinic acid (3CQA) and the novel compound, 1-caffeoyl-4-deosyquinic acid (ICdQA), which were extracted from the wild groundnut species, Arachis paraguariensis (Chod et Hassl.) was also evaluated at a concentration equivalent to that found in the plant (9 mM). This mixture was a potent inhibitor of larval development and more potent than 5CQA alone at the same concentration. The potential role of these substances in host plant resistance of groundnuts and their interaction with other components of pest management strategies are discussed.

Résumé

L'effet des acides caféoylquiniques et leurs unités structurales à savoir, l'acide caféique et l'acide quinique sur le développement larvaire de Helicoverpa armigera, a été évalué. L'acide 5-caféoylquinique (5CQA) (syn. acide chlorogénique) a retardé de façon significative, à la concentration de 9 mM dans un aliment artificiel, le développement larvaire et a allongé la durée du stade pupal quoique le poids final des pupes n'était pas gravement affecté. L'acide caféique et l'acide quinique ont, eux aussi, inhibé le developpement larvaire mais de façon moins marquée. Dans tous les cas, l'effet des composés dépendait de la dose. Un mélange de ces substances contenant 5CQA, l'acide 3-caféoylquinique (3CQA) et le nouveau composé, l'acide 1-caféoyl 4-deoxyquinique (1CdQA), extraits de l'espèce d'arachide sauvage, Arachis paraguariensis, a aussi été évalué à une concentration équivalente à celle trouvée dans la plante (9 mM). Le mélange constituait un inhibiteur très puissant pour le développement larvaire et plus puissant que le 5CQA utilisé seul à la même concentration. Le rôle potentiel de ces substances dans la résistance des arachides en tant que plantes hôtes ainsi que leur interaction avec d'autres composantes des stratégies intégrées pour le lutte contre les ravageurs est discuté.

Type
Research Articles
Copyright
Copyright © ICIPE 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Armes, N. J., Jadhav, D. R., Bond, G. S. and King, A. B. S. (1992) Insecticide resistance in Helicoverpa armigera in South India. Pesticide Science 34, 355364.CrossRefGoogle Scholar
Duffey, S. S. and Bloem, K. A. (1986) Plant defence-herbivore-parasite interactions and biological control, pp. 135183. In Ecological Theory and Integrated Pest Management (Edited by Kogan, M.), John Wiley, NY.Google Scholar
Duffey, S. S. and Felton, G. W. (1991) Enzymatic anti-nutritive defences of the tomato plant against insects, pp. 135183. In Naturally Occurring Pest Bioregulators, Chapter 12 (Edited by Hedin, P. A.), ACS Symp. Ser. 449, Washington DC.Google Scholar
Elliger, C. A., Chan, B. G. and Waiss, A. C. (1980) Flavonoids as larval growth inhibitors: Structural features governing toxicity. Naturwissenschaften 67, 358360.CrossRefGoogle Scholar
Elliger, C. A., Wong, Y., Chan, B. G. and Waiss, A. C. Jr (1981) Growth inhibitors in tomato (Lycopersicon) to the tomato fruitworm (Heliothis zea). J. Chem. Ecol. 7, 753758.CrossRefGoogle Scholar
Farrar, R. R. and Kennedy, G. G. (1990) Growth inhibitors in host plant resistance to insects: Examples from a wild tomato with Heliothis zea. J. Entomol. Sci. 25, 4656.Google Scholar
Felton, G. W., Duffey, S. S., Vail, P. V., Kaya, H. K. and Manning, J. (1987) Interaction of nuclear polyhedral virus with catechols: Potential incompatibility for host plant resistance against noctuid larvae. J. Chem. Ecol. 13, 947958.CrossRefGoogle Scholar
Felton, G. W., Donate, K., Del Vecchio, R. J. and Duffey, S. S. (1989) Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores. J. Chem. Ecol. 15, 26672694.CrossRefGoogle ScholarPubMed
Isman, M. B. and Duffey, S. S. (1982a) Phenolic compounds in the foliage of tomato cultivars as growth inhibitors to the fruitworm Heliothis zea. J. Amer. Soc. Hort. Sci. 107, 167170.CrossRefGoogle Scholar
Isman, M. B. and Duffey, S. S. (1982b) Toxicity of tomato phenolic compounds to the fruitworm Heliothis zea. Entomol. Exp. Appl. 31, 370376.CrossRefGoogle Scholar
IUPAC (1976) Nomenclature of cyclitols. Bioch. J. 153, 2331.Google Scholar
Matheis, G. and Whitaker, J. R. (1984) Modification of proteins by phenoloxidase and peroxidase and their products. J. Food Biochem. 8, 137162.CrossRefGoogle Scholar
Stevenson, P. C. (1993) Biochemical resistance in wild species of Arachis to Spodoptera litura. IOBC/WPRS Bulletin 16, 155162.Google Scholar
Stevenson, P. C., Anderson, J. C., Blaney, W. M. and Simmonds, M. S. J. (1993a) Developmental inhibition of Spodoptera litura (Fab.) larvae by a novel caffeoyl quinic acid from the wild groundnut Arachis paraguariensis (Chod et Hassl.). J. Chem. Ecol. 19, 29172933.CrossRefGoogle Scholar
Stevenson, P. C., Blaney, W. M., Simmonds, M. S. J. and Wightman, J. A. (1993b) Identification and characterisation of resistance in wild species of Arachis to Spodoptera litura Fab. (Lep.: Noct.). Bull. ent. Res. 83, 421429.CrossRefGoogle Scholar
Taneja, S. L. and Leuschner, K. (1985) Methods of rearing, infestation and evaluation for Chilo partellus resistance in sorghum, pp. 175188. In Proceedings of the International Entomology Workshop, 15–21 July 1984 at Texas A & M University, College Station, Tx., USA. ICRISAT, AP., India.Google Scholar
van Emden, H. F. (1987) Cultural methods: The plant, pp. 2768. In Integrated Pest Management (Edited by Burn, A. J., Coaker, T. H. and Jepson, P. C.). Academic Press, London.Google Scholar
Wightman, J. A., Dick, K. M., Ranga, Rao G. V., Shanower, T. G. and Gold, C. G. (1990) Pests of groundnut in the semi-arid tropics, pp. 243322. In Insect Pests of Food Legumes (Edited by Singh, S. R.). J. Wiley & Sons Ltd., NY.Google Scholar
Wiseman, B. R., Gueldner, R. C., Lynch, R. E. and Severson, R. F. (1990) Biochemical activity of centipede grass against fall armyworm larvae. J. Chem. Ecol. 16, 26772690.CrossRefGoogle Scholar