Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T13:06:01.743Z Has data issue: false hasContentIssue false

Growth patterns of the ladybird (Harmonia axyridis Pallas) relative to variations in population genetics

Published online by Cambridge University Press:  08 April 2017

R. P. Kuang
Affiliation:
Kunming Institute of Zoology, Academia Sinica, Kunming, 650223, P. R. China
N. N. Xiao
Affiliation:
Kunming Institute of Zoology, Academia Sinica, Kunming, 650223, P. R. China
Get access

Abstract

Differences in population growth among four variation types of the ladybird beetle, Harmonia axyridis Pallas, namely succinea, conspicua, spectabilis and aulica, were investigated using various growth parameters. The variation types showed three growth patterns from the intrinsic growth rates (rm), with rates of 0.093–0.099 (for conspicua and aulica), 0.073 (for succinea) and 0.040 (for spectabilis). The growth rates of these patterns were realised in different ways. Spectabilis differed from the other three types in the age and per cent distribution of the specific period to the rm values.

Résumé

Des différences dans la croissance de population parmi 4 types de variétés chez la coccinelle, Harmonia axyridis Pallas, a savoir succinea, conspicua, spectalis et aulica ont été étudiées au moyen de divers paramètres de croissance. Les types de variétés ont montré 3 formes de croissance du point de vue taux de croissance intrinsèque (rm), la lère avec un taux de 0,093–0,099 chez conspicua et aulica, une autre avec un taux de 0,073 chez succinea et l'autre de 0,040 pour spectabilis. Les taux de croissance chez ces formes ont été accomplis de diverses manières. En outre, spectabilis a différé des trois autres formes sur la distribution d'âge et le pourcentage de la période spécifique par rapport aux valeurs de rm.

Type
Research Articles
Copyright
Copyright © ICIPE 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barker, J. S. F., Starmer, W. T. and MacIntyre, R. J. (1990) Ecological and Evolutionary Genetics of Drosophila. Plenum Press, New York.CrossRefGoogle Scholar
Birch, L. C. (1948) The intrinsic rate of natural increase of an insect population. J. Anim. Ecol. 17, 1526.CrossRefGoogle Scholar
Clarke, C.B. (1979) The evolution of genetic diversity. Proc. R. Soc Lond B. 205, 453474.Google ScholarPubMed
Dobzhansky, T. (1951) Genetics and the Origin of Species, 3rd ed. Columbia University Press, New York.Google Scholar
Ford, E. B. (1971) Ecological Genetics, 3rd ed. Chapman & Hall, London.Google Scholar
Geng, Z. C. and Tan, J. Z. (1980) On some genetic problems in the Asiatic ladybird beetle, Harmonia axyridis Pallas. Nature Journal, China 3, 512518.Google Scholar
Kuang, R. P. and Fleming, R. (1992) Validation and analyses of the simple method for determining rm of aphids and mites. Zool. Res. China 13, 3746.Google Scholar
Kuang, R. P. and Smith, S. M. (1993) Application of Wyatt-White method to calculating intrinsic rates of increase for hymenopterous parasitoids. Zool. Res. China 14, 208214.Google Scholar
Pimentel, D. (1961) Animal population regulation by the genetic feedback mechanism. American Naturalist Vol. XCV, 6579.CrossRefGoogle Scholar
Pimentel, D. (1968) Population regulation and genetic feedback. Science 159, 14321437.CrossRefGoogle ScholarPubMed
Shi, L. M. (1990) Genetic diversity and its conservation. In Proceedings of the Symposium on Biological Diversity (Edited by Song, Wang and xue-Hao, Du), pp. 7382. Bureau of Biosciences and Biotechnology, Chinese Academy of Sciences, Beijing, 1990.Google Scholar
Wyatt, I. J. and White, P. F. (1977) Simple estimation of intrinsic increase rates for aphids and tetranychid mites. J. Appl. Ecol. 14, 757766.CrossRefGoogle Scholar