Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-03T22:28:45.486Z Has data issue: false hasContentIssue false

Host preference studies on Trichogramma sp. nr. mwanzai Schulten and Feijen (Hymenoptera: Trichogrammatidae) in Kenya

Published online by Cambridge University Press:  19 September 2011

Lu Qing Guang
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), Mbita Point Field Station, P. O. Box 30, Mbita, Kenya
G. W. Oloo
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), Mbita Point Field Station, P. O. Box 30, Mbita, Kenya
Get access

Abstract

Host preference studies were conducted on Trichogramma sp. nr. mwanzai at 25 ± 2°C, 40–60% r. h. In the laboratory, using eggs of C. partellus, B. fusca, E. saccharina, S. cerealella and B. mori in choice and no-choice tests. Adults emerged within 9–10 days; ca. 70% parasitoids of both sexes emerged and mated between 0800–1000 hr, with a peak at 0800 hr. There was no significant difference (P < 0.05) between the number of progeny per female from eggs of C. partellus (33.9 ± 9.2), B. fusca (30.1 ± 4.5) and S. cerealella (30.9 ± 9.9) in no-choice tests, but progeny production was significantly less from E. saccharina and no parasitoid emerged from B. mori. In host age selection tests on C. partellus, there was no significant difference (P < 0.05) between the number of offspring per female from eggs of age groups 0–2 days; offspring of day 3 were significantly less, and no parasitoid emerged from day 4 eggs. Up to 4 (mean, 1.9 ± 0.6) adults emerged from a single egg of C. partellus. Since mass rearing technology exists for C. partellus and is available at ICIPE, it was concluded that day 0–2 eggs of this borer are more suitable for mass production of T. sp. nr. mwanzai.

Résumé

Les etudes de la préférence de l'hôte ont été conduites sur Trichogramma sp. nr. mwanzai à 25 ± 2°C, 40–60% HR au laboratoire, utilisant les oeufs de C. partellus, B. fusca, E. saccharina, S. cerealella et B. mori par tests a seul et à plusieurs alternatives. Les adultes emergeaient en 9–10 jours; approximativement 70% de parasitoides de deux sexes emergeaient et s'accouplaient de 0800–1000h avec un maximum à 0800h. Il n'yavait pas de différence significative (P < 0.05) entre le nombre de la descendance/femelle venue des oeufs de C. partellus (33.9 ± 9.2), B. fusca (30.1 ± 4.5) et S. cerealella (30.9 ± 9.9) dans le test à seule alternative, mais la progeniture était moins significative pour E. saccharina et pas d'emergence, de parasitoides venus de B. mori. Dans les tests de la sélection de, l'âge de l'hôte sur C. partellus, il n'yavait pas de différence significative (P < 0.05) entre le nombre de la descendance/femelle venue des oeufs de groupes d'âge 0–2 jours; la progeniture à partir du 3 me jour etait significativement inférieure et pas d'emergence de parasitoides de oeufs à partir du 4 me jour. De 4 (moyeune 1.9 ± 0.6) adultes emergaient d'un simple oeuf du C. partellus. Depuis l'existance de la technologie de multiplication en masse pour C. partellus, il a été conclu que les oeufs de 0–2 jours de ce boreur sont plus indiques pour la production en masse de T. sp. nr. mwanzai.

Type
Biological Control
Copyright
Copyright © ICIPE 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beglyarov, G. A. and Smetnik, A. T. (1977) Seasonal colonization of entomophages in the USSR. In Biological Control by Augmentation of Natural Enemies (Edited by Ridgway, R. L. and Vinson, S. B.). Plenum Press, NY.Google Scholar
Burbutis, P. P., Morose, B. W., Morris, D. and Bencon, G. (1983) Trichogramma nubilale (Hymenoptera: Trichogrammatidae): Progeny distribution and superparasitism in European corn borer (Lepidoptera: Pyralidae). Environ. Entomol. 12, 15871589.CrossRefGoogle Scholar
Cock, M. J. W. (1985) The use of parasitoids for augmentative biological control of pests in the People's Republic of China. Biocon. News Info. 6, 213223.Google Scholar
Curl, G. D. and Burbutis, P. P. (1978) Host-preference studies with Trichogramma nubilale. Entomol. 7, 541543.Google Scholar
Davis, C. P. and Burbutis, P. P. (1974) The effect of age selective rearing on the biological quality of females of Trichogramma nubilale. Ann. Entomol. Soc. Am. 67, 765766.CrossRefGoogle Scholar
Greathead, D. J. and Waage, J. K. (1983) Opportunities for biological control of agricultural pests in developing countries. World Bank Technical Paper No. 11. Washington DC, USA.Google Scholar
Hassan, S. A. (1982) Mass production and utilization of Trichogramma: 3. Results of some research projects related to the practical use in the Federal Republic of Germany. In Les Trichogrammes (Edited by INRA) France.Google Scholar
Hassan von, S. A. and Heil, M. (1980) Bekampfung des maiszunslers mit einer einmaligen freilassung des eiparasiten Trichogramma evanescens West. Nachrichtenbl. Deut. Pflanzenschutzd. 32, 9799.Google Scholar
Huffaker, C. B. (1976) Augmentation of natural enemies in the People's Republic of China. In Biological Control by Augmentation of Natural Enemies (Edited by Ridgway, R. L. and Vinson, S. B.). Plenum Press, NY.Google Scholar
Lu Qing, Guang (1989) Studies on native Trichogramma (Hymenoptera: Trichogrammatidae) strains in Kenya. Ph.D. thesis, Graduate School, Chinese Academy of Sciences.Google Scholar
Mathez, F. C. (1972) Chilo partellus (Swinh.), C. orichalcociliellus Strand (Lepidoptera: Crambidae) and Sesamia calamistis Humps. (Lepidoptera: Noctuidae) on maize in the Coast Province, Kenya. Mitt. Schweiz Entomol. Ges. 45, 267289.Google Scholar
Ochieng', R. S., Onyango, F. O. and Bungu, M. D. O. (1985) Improvement of techniques for mass-culture of Chilo partellus (Swinhoe). Insect Sci. Applic. 6, 425428.Google Scholar
Oloo, G. W. (1989) The role of local natural enemies in population dynamics of Chilo partellus (Swinh.) (Pyralidae) under subsistence farming systems in Kenya. Insect Sci. Applic. 10, 243251.Google Scholar
Pak, G. A. (1986) Behaviour variations among strains of Trichogramma spp. A review of the literature on the host-age selection. J. Appl. Entomol. 101, 5563.CrossRefGoogle Scholar
Schulten, G. G. M. and Feijen, H. R. (1982) A new species of Trichogramma (Hymenoptera: Trichogrammatidae) from Malawi, parasitizing eggs of Chilo diffusilineus (de Joannis). Entomologische Berichten. Deel 42, 1. IX, 142144.Google Scholar
Van Dijken, M. J., Kole, M., Van Lenteren, J. C. and Brand, A. M. (1986) Host-preference studies with several strains of Trichogramma evanescens West. (Hym: Trichogrammatidae) for Mamestra brassicae, Pieris brassicae and P. rapae. Z. angew. Entomol. 101, 6485.Google Scholar
Van Lenteren, J. C., Glas, P. C. G. and Smits, P. H. (1982) Evaluation of control capabilities of Trichogramma and results of laboratory and field research on Trichogramma in the Netherlands. In Les Trichogrammes (Edited by INRA), France.Google Scholar
Walker, P. T. (1967) A survey of losses of cereals to pests in Kenya and Tanzania. FAO Symp. on Crop Losses. Rome. pp. 7988.Google Scholar
Warui, C. M. and Kuria, J. N. (1983) Population incidence and control of maize stalk borers Chilo partellus (Swinh.), C. orichalcociliellus Strand and Sesamia calamistis Hmps. in Coast Province, Kenya. Insect Sci. Applic. 4, 1118.Google Scholar
Whitney, W. K. (1977) Insect and mite pests and their control. In Food Crops of the Lowland Tropics (Edited by Leakey, C. L. A. and Wills, J. B.). Oxford University Press.Google Scholar