Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T08:22:01.609Z Has data issue: false hasContentIssue false

Influence of Helicoverpa Armigera (Hübner) Diet on Its Parasitoid Campoletis Chlorideae Uchida

Published online by Cambridge University Press:  19 September 2011

K. Murugan
Affiliation:
Division of Entomology, Department of Zoology Bharathiar University, Coimbatore-641 046, India
N. Senthil Kumar
Affiliation:
Division of Entomology, Department of Zoology Bharathiar University, Coimbatore-641 046, India
M. Swamiappan
Affiliation:
Biocontrol Laboratory, Department of Entomology Tamil Nadu Agricultural University, Coimbatore-641 003, India
Get access

Abstract

A study was undertaken to test the hypothesis that the quality of host plant parts determines the nutritional quality of herbivorous insects feeding on it to their parasitoids. A Gossypium hirsutum-Helicoverpa armigera-Campoletis chlorideae tritrophic system was evaluated. The superior nutritional quality of bolls and young leaves of Gossypium hirsutum (MCU-5 variety) contributes to more efficient feeding, growth and reproduction of the bollworm, Helicoverpa armigera (Hübner) and better survival of its larval parasitoid, Campoletis chlorideae Uchida. Longer total developmental duration and decrease in adult longevity were observed in H. armigera reared on senescent leaves than in those reared on bolls. Consumption, growth rate and efficiency measures were significantly lower in parasitised H. armigera larvae than in unparasitised larvae. Percentage parasitism was highest (84.1%) in H. armigera fed on bolls. The parasitoid C. chlorideae displayed shorter developmental duration and improved survival on H. armigera fed on bolls.

Résumé

Une étude a été conduite pour vérifier l'hypothèse selon laquelle la qualité de différentes parties de la plante nourricière déterminent la qualité nutritionnelle des insectes herbivores qui s'en nourrissent ainsi que celle de leurs parasitoïdes. Un complexe trophique Gossypium hirsutum-Helicoverpa armigera-Campoletis chlorideae a été évalué. La qualité nutritionnelle supérieure des capsules et jeunes feuilles de G. hirsutum (var. MCU-5) contribue à une meilleure alimentation, une meilleure croissance et à la reproduction du ver rose, Helicoverpa armigera (Hübner) ainsi qu'à une meilleure survie de son parasitoïde larvaire, Campoletis chlorideae Uchida. La durée totale de développement la plus longue et la réduction de la longévité chez les adultes ont été notés, une fois que H. armigera était élevé sur les feuilles sénescentes, en comparaison des adultes élevés sur les capsules. La consommation, le taux de croissance et la performance étaient plus bas chez les larves parasitées. Le pourcentage de parasitisme était plus élevé (84,1%), chez les larves de H. armigera nourries sur les capsules. Une fois l'insecte nourri sur les capsules, son parasitoïde C. chlorideae montrait une durée plus courte de développement et une survie plus améliorée.

Type
Research Articles
Copyright
Copyright © ICIPE 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atalay, D., Cherrad, M. and Bouard, J. (1973) Mise en evidence de plusiers acides gras dans les sarments aoutes de Vitis vinifera L. var ugni blanc. C. R. Acad. Sci., Serie, D. 277, 309311.Google Scholar
Barbosa, P., Saunders, J. A., Kemper, J., Trumble, R., Olechno, J. and Martinat, P. (1986) Plant allelochemicals and insect parasitoids: Effect of nicotine on Cotesia congregata and Hyposoter annulipes. J. Chem. Ecol. 12, 13191328.CrossRefGoogle Scholar
Bernays, E. A. (1981) Plant tannins and insect herbivores—An appraisal. Ecol. Entomol. 6, 353360.CrossRefGoogle Scholar
Bernays, E. A. and Chapman, R. F. (1978) Plant chemistry and acridid feeding behaviour, p. 15. In Biochemical Aspects of Plant and Animal Co-evolution (Edited by Harborne, J. B.). Academic Press, New York.Google Scholar
Bernays, E. A. and Woodhead, S. (1984) The need for high level of phenylalanine in the diet of Schistocerca gregaria nymph. J. Insect Physiol. 30, 489493.CrossRefGoogle Scholar
Bloem, K. A. and Duffey, S. S. (1990) Effect of protein type and quantity on growth and development of larval Heliothis zea and Spodoptera exigua and the endoparasitoid Hyposoter exiguae. Entomol. Exp. Appl. 54, 141148.CrossRefGoogle Scholar
Broadway, R. M. and Duffey, S. S. (1986) The effect of dietary protein on the growth and digestive physiology of larvae of Heliothis zea and S. exigua. J. Insect Physiol. 32, 673680.CrossRefGoogle Scholar
Campbell, B. C. and Duffey, S. S. (1979) Tomatine and parasitoid wasps: Potential incompatibility of plant antibiosis with biological control. Science 205, 700702.CrossRefGoogle Scholar
Dadd, H. (1985) Nutrition: Organisms, pp. 313390. In Comprehensive Insect Physiology, Biochemistry and Pharmacology Vol. 4 (Edited by Kerkut, G. A. and Gilbert, L. I.). Pergamon Press, Oxford.Google Scholar
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F. (1958) Calorimetric determination of sugars and related substances. Ann. Chem. Warsaw 28, 351356.Google Scholar
Duodu, Y. A. and Antoh, F. F. (1984) Efforts of parasitism by Apanteles sagax (Hymenoptera: Braconidae) on growth, food consumption and food utilisation in Sylepta derogata larvae (Lepidoptera: Pyralidae). Entomophaga 29, 6371.CrossRefGoogle Scholar
Folch, J., Less, M. and Sloane-Stanley, G. H. (1957) A simple method for isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497509.CrossRefGoogle ScholarPubMed
Gange, A. C. and Brown, V. K. (1989) Effects of root herbivory by an insect on a foliar-feeding species, mediated through changes in the host plant. Oecologia 81, 3842.CrossRefGoogle ScholarPubMed
Jeyabalan, D. and Murugan, K. (1996) Impact of variation in foliar constituents of Mangifera indica Linn, on consumption and digestion efficiency of Latoia lepida Cramer. Indian J. Exp. Biol. 34, 472474.Google Scholar
Julkunen-Tiitto, R. (1985) Phenolic constituents in the leaves of Northern willows. Methods for the analysis of certain phenolics. J. Agric. Pood Chem. 33, 213217.CrossRefGoogle Scholar
Kumar, P. and Ballal, C. R. (1992) The effect of parasitism by Hyposoter didyamator (Hymenoptera: Ichneumonidae) on food consumption and utilisation by Spodoptera litura (Lepidoptera: Noctuidae). Entomophaga 37, 197203.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. G., Farr, A. L. and Randall, R. J. (1951) Protein measurements with Folin phenol reagent. J. Biol. Chem. 193, 265275.CrossRefGoogle ScholarPubMed
Mani, M. (1994) Relative toxicity of different pesticides to Campoletis chlorideae Uchida. J. Biol. Contr. 8, 1822.Google Scholar
Mattson, W. J. Jr (1980) Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 11, 119161.CrossRefGoogle Scholar
Murugan, K. and George, A. Sr (1992) Feeding and nutritional influence on growth and reproduction of Daphnis nerii (Linn.) (Lepidoptera: Sphingidae). J. Insect Physiol. 38, 961968.CrossRefGoogle Scholar
Murugan, K., Senthil Kumar, L., Jeyabalan, D., SenthilNathan, S. and Sivaramakrishnan, S. (1997) Feeding and reproductive behaviour of flower beetle, Mylabris pustulata Thunb. (Coleoptera: Meloidae). Zoo's Print 12, 1214.Google Scholar
Nordlund, D. A., Lewis, W. J. and Altieri, M. A. (1988) Influences of plant produced allelochemicals on the host/prey selection behaviour of entomophagous insects, pp. 6578. In Novel Aspects of Insect-Plant Interactions (Edited by Barbosa, P. and Letourneau, D. K.). John Wiley & Sons, New York.Google Scholar
Oka, Y., Tsuji, H., Ogawa, T. and Sasaoka, K. (1981) Quantitative determination of the free amino acids and their derivatives in the common edible mushroom Agaricus bisporus. J. Nut. Sci. Vit. 27, 253262.CrossRefGoogle ScholarPubMed
Parnanen, S. and Turunen, S. (1987) Eicosapentaenoic acid in tissue lipids of Pieris brassicae. Experientia 43, 215217.CrossRefGoogle Scholar
Price, P. W. (1986) Ecological aspects of host plant resistance and biological control. Interactions among three trophic levels. In Interactions of Plant Resistance and Parasitoids and Predators on Insects (Edited by Boethel, D. J. and Eikenbary, R. D.). Ellis Horwood, Chichester.Google Scholar
Price, J. P., Bouton, C. E., Gross, P., McPheron, B. A., Thompson, J. N. and Weis, A. E. (1980) Interactions among three trophic levels. Influence of plants on interactions between insect herbivores and natural enemies. Annu. Rev. Ecol. Syst. 11, 4165.CrossRefGoogle Scholar
SAS Institute (1988) SAS Users Guide: SAS/STAT, release 6.03, SAS Institute, Cary, NC.Google Scholar
Schultz, J. C. (1983) Impact of variable plant defensive chemistry and susceptibility of insects to natural enemies, pp. 3754. In Plant Resistance to Insects (Edited by Hedin, P.). American Chemical Society, Washington, DC.CrossRefGoogle Scholar
Stadler, B. and Mackeur, M. (1996) Influence of plant quality on interactions between the aphid parasitoid, Ephedrus californicus Baker and its host, Acrylhosiphon pisum Harris. Can. Entomol. 128, 2739.CrossRefGoogle Scholar
Stipanovic, R. D., Williams, H. J. and Smith, L. A. (1986) Cotton terpenoid inhibition of Heliothis virescens development, pp. 7994. In Natural Resistance of Plants to Pests (Edited by Hedin, A.). American Chemical Society Symposium series. No. 208, Washington, DC.CrossRefGoogle Scholar
Thompson, S. N. (1976) The amino acid requirements for larval development of the hymenopterous parasitoid Exeristes roborator Fab. (Hymenoptera: Ichneumonidae). Biochem. Physiol. 53A, 211213.CrossRefGoogle Scholar
Thorpe, K. W. and Barbosa, P. (1986) Effects of consumption of high and low nicotine tobacco by Manduca sexta on survival of gregarious endoparasitoid, Conestia congregata. J. Chem. Ecol. 12, 13291337.CrossRefGoogle Scholar
Vinson, S. B. (1972) Effect of the parasitoid, Campoletis sonoresis, on the growth of its host, Heliothis virescens. J. Insect Physiol. 18, 15091514.CrossRefGoogle Scholar
Vinson, S. B. and Iwantsch, G. H. (1980) Host suitability for insect parasitoids. Annu. Rev. Entomol. 25, 397419.CrossRefGoogle Scholar
Vogel, I. A. (1963) Determination of nitrogen by Kjeldahl's methods, pp. 256257. In Text Book of Quantitative Inorganic Analysis Including Elementary Instrumental Analysis. Longman, London.Google Scholar
Waldbauer, G. P. (1968) Consumption and utilisation of food by insects. Adv. Insect Physiol. 5, 228229.Google Scholar
Waldbauer, G. P. and Friedman, S. (1991) Self-selection of optimal diets by insects. Annu. Rev. Entomol. 36, 4363.CrossRefGoogle Scholar
Whitham, T. G., Maschinski, J., Larson, K. C. and Paige, K. N. (1991) Plant response to herbivory: The continuum from negative to positive and underlying physiological mechanisms, pp. 227256. In Plant Animal Interactions Evolutionary Ecology in Tropical and Temperate Regions (Edited by Price, P. W., Lewinsohn, T. M., Fernandes, G. W. and Benson, W. W.). Wiley and Sons, New York.Google Scholar
Yang, H. G. and Davis, D. D. (1976) Heritability and combing ability for gossypol content in six lines of upland cotton. Crop Science 17, 305307.CrossRefGoogle Scholar