Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T12:03:39.748Z Has data issue: false hasContentIssue false

Isolation and properties of a 23-KD haemolymph protein from the tsetse, Glossina morsitans morsitans

Published online by Cambridge University Press:  19 September 2011

Edward K. Nguu
Affiliation:
Department of Biochemistry, The University of Nairobi, P. O. Box 30197, Nairobi, Kenya
Ellie O. Osir*
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), P. O. Box 30772, Nairobi, Kenya
James O. Ochanda
Affiliation:
Department of Biochemistry, The University of Nairobi, P. O. Box 30197, Nairobi, Kenya
Norah K. Olembo
Affiliation:
Department of Biochemistry, The University of Nairobi, P. O. Box 30197, Nairobi, Kenya
*
* To whom correspondence should be addressed.
Get access

Abstract

The haemolymph of the tsetse, Glossina morsitans morsitans, contains a low molecular weight protein of very high density (1.29 g/mi). The protein was detected in the haemolymph during all developmental stages of the insect. Purification of the protein was achieved by a combination of density gradient ultracentrifugation and repeated gel permeation chromatography. Electrophoresis under non-denaturing and denaturing conditions showed the protein to be a single polypeptide chain (M,˜23,000). Amino acid analysis revealed a relatively high content of the acidic amino acids as well as serine and glycine. The protein contained lipids as shown by Sudan Black staining but was nonglycosylated. Using rabbit antiserum against the isolated protein in immunodiffusion and immunoblotting experiments, no cross-reactivity was detected with haemolymph samples from insects representing six orders. Although the function of the protein remains unknown, its uniqueness to Glossina suggests that it may have a role in the physiology of this insect.

Résumé

L'hémolymphe de la mouche tsetsé, Glossina morsitans morsitans, renferme une protéine de faible poids moléculaire à densité très élevée (1.29 g/ml). La protéin a été décelée dans l'hémolymphe à tous les stades de développement de l'insecte. Sa purification est obtenu grâce à une combinaison de I'ultracentrifugation par gradient de densité et de la chromatographie repetée sur gel filtrant. L'électrophorèse en conditions non denaturante et denaturante a révelé que la protéine est une simple chaîne de polypeptide (Mr = 23,000) serine et glycine.

L'analyse des acides aminés a perm is de déceler un taux élevée d'acides aminés acides. La protéine contient également des lipides relevés par coloration au Noir du soudan, mais était non glycolisée. En utilisant de l'antisérum de lapin sur la protéine isolée au cours de l'immunodiffusion et l'immunotampon, aucune réaction croisée fut détectée avec des échantillons d'hémolymphe d'insectes représentant six ordres. La fonction de la protéin reste cependant inconnue mais sa spécificité par rapport au Glossina, laisse supposer qu'elle pourrait Jouer un rôle important dans la physiologie de cet insecte.

Type
Research Articles
Copyright
Copyright © ICIPE 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brown, J. J. and Chippendale, G. M. (1978) Juvenile hormone and protein associated with the larval diapause of the southwestern corn boter, Diatraea grandiosella. Insect Biochem. 8, 359367.CrossRefGoogle Scholar
Burnette, W. N. (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulphate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radio-iodinated protein A. Anal. Biochem. 122, 195203.CrossRefGoogle Scholar
Bursell, E., Billing, K. C., Hargrove, J. W., MacCabe, C. T. and Slack, E. (1974) Metabolism of the blood meal in tsetse flies. Acta Tropica 31, 297320.Google Scholar
Chino, H. and Kitazawa, K. (1981) Diacylglycerol-carrying lipoprotein of haemolymph of the locust and some insects. J. Lipid Res. 22, 10421052.CrossRefGoogle ScholarPubMed
Dillwith, J. W. and Chippendale, G. M. (1984) Purification and properties of a protein that accumulates in the fat body of prediapausing larvae of the southwestern corn borer, Diatraea grandiosella. Insect Biochem. 14, 369381.CrossRefGoogle Scholar
Ferkovich, S. M., Silhacek, D. L. and Rutter, R. (1975) Juvenile hormone binding proteins in the haemolymph of Indian meal moth. Insect Biochem. 5, 141150.CrossRefGoogle Scholar
Goodman, W. and Chang, E. (1985) Juvenile hormone cellular and haemolymph binding proteins. In Comprehensive Insect Physiology, Biochemistry, and Pharmacology (Edited by Kerkut, G. A. and Gilbert, L. I.), Vol. 7, pp. 491510. Pergamon Press, Oxford.Google Scholar
Hammock, B. D. (1985) Regulation of juvenile hormone titer: Degradation. In Comprehensive Insect Physiology, Biochemistry and Pharmacology (Edited by Kerkut, G. A. and Gilbert, L. I.), Vol. 7, pp. 431472, Pergamon Press, Oxford.Google Scholar
Haunerland, N. H., Ryan, R. O., Law, J. H. and Bowers, W. S. (1986) Lipophorin from the grasshopper, Gastrimargus africanus. Isolation and properties of apolipophorin-III. Insect Biochem. 16, 797802.CrossRefGoogle Scholar
Haunerland, N. H., Ryan, R. O., Law, J. H. and Bowers, W. S. (1987) Purification of very high density lipoprotein by differential density gradient ultracentrifugation. Anal. Biochem. 161, 307310.CrossRefGoogle ScholarPubMed
Kanost, M. R., Kawooya, J. K., Law, J. H., Ryan, J. O., Van Heusden, M. C. and Ziegler, R. (1990) Insect haemolymph proteins. Adv. Insect Physiol. 22, 299396.CrossRefGoogle Scholar
Kapitany, R. A. and Zebrowski, E. J. (1973) A high resolution PAS stain for polyacrylamide gel. Anal. Biochem. 56, 361369.CrossRefGoogle ScholarPubMed
Kawooya, J. K. and Law, J. H. (1983) Purification and properties of microvitellogenin of Manduca sexta. Role of juvenile hormone in appearance and uptake. Biochem. Biophys. Res. Commun. 117, 643650.CrossRefGoogle ScholarPubMed
Kawooya, J. K., Meredith, S. C., Wells, M. A., Kezdy, F. J. and Law, J. H. (1986) Physical and surface properties of insect apolipophorin-III. J. Biol. Chem. 261, 1358813591.CrossRefGoogle ScholarPubMed
Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond.) 227, 680685.CrossRefGoogle ScholarPubMed
Narayan, K. A. (1975) Electrophoretic methods for the separation of serum lipoproteins. (Edited by Perkins, E.G.), pp. 225249. American Oil Chemists' Society, Champaign, IL.Google Scholar
Ochanda, J. O., Osir, E. O., Nguu, E. K. and Olembo, N. K. (1991) Lipophorin from the tsetse fly, Glossina morsitans morsitans. Comp. Biochem. Physiol. 99B, 811814.Google Scholar
Osir, E. O., Wells, M. A. and Law, J. H. (1986) Studies of vitellogenin from the tobacco hornworm, Manduca sexta. Arch, insect. Biochem. Physiol. 3, 217223.CrossRefGoogle Scholar
Osir, E. O., Labongo, L. V. and Unnithan, G. C. (1989) A high molecular weight diapause associated protein from the stem-borer, Busseola fusca: Purification and properties. Arch. Insect Biochem. Physiol. 11, 173187.CrossRefGoogle Scholar
Ouchterlony, O. (1968) Antibody reactions in gels. In Handbook of Immunodiffusion and Immunoelectrophoresis. Ann Arbor Science Publishers, Ann Arbor, Michigan.Google Scholar
Riddiford, L. M. and Law, J. H. (1983) Larval serum proteins of Lepidoptera. In the Larval Serum Proteins of Insects (Edited by Scheller, K.), pp. 7585. Thieme, Stuttgart.Google Scholar
Rudnicka, M., Sehnal, F., Jarolim, V. and Kochman, M. (1979) Hydrolysis and binding of the juvenile hormone in the haemolymph of Galleria mellonella. Insect Biochem. 9, 569575.CrossRefGoogle Scholar
Shapiro, J. P., Law, J. H. and Wells, M. A. (1988) Lipid transport in insects. A. Rev. Entomol. 33, 297318.CrossRefGoogle ScholarPubMed
Thomas, K. K. (1979) Isolation and partial characterisation of the haemolymph lipoproteins of the wax moth, Galleria mellonella. Insect Biochem. 9, 211219.CrossRefGoogle Scholar
Turunen, S. and Chippendale, G. M. (1980) Fat body protein associated with the larval diapause of the southwestern corn borer, Diatraea grandiosella: Synthesis and characteristics. Comp. Biochem. Physiol. 65 B, 595603.Google Scholar
Van der Horst, D. J., Van Doom, J. M. and Beenakkers, A. M. Th. (1984) Hormone-induced rearrangement of locust haemolymph lipoproteins. The involvement of glycoprotein C2. Insect Biochem. 14, 495504.CrossRefGoogle Scholar
Wells, M. A., Ryan, R. O., Prasad, S. V. and Law, J. H. (1985) A novel procedure for purification of apolipophorin-III. Insect Biochem. 15, 565571.CrossRefGoogle Scholar