Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T09:57:22.104Z Has data issue: false hasContentIssue false

Leishmania in Kenyan phlebotomine sandflies—III. Advances in the investigations of vectorial capacity and vector-parasite relationships of various species of sandflies in Kenya

Published online by Cambridge University Press:  19 September 2011

John B. Kaddu
Affiliation:
International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
Get access

Abstract

The paper reviews advances in our understanding of the vectorial capacity and vector–parasite relationship in Kenyan sandflies since the early 1900s (when sandflies were first reported in Kenya). Of the 38 species of sandflies known to occur in Kenya to date, three (Phlebotomus pedifer, P. martini and P. duboscqi) can naturally carry biochemically and serologically confirmed Leishmania (aethiopica, donovani and major, respectively) and 12 (Phlebotomus rhodhaini, Sergentomyia garnhami, S. squamipleuris, S. africanus, S. kirki, S. ingrami, S. antennatus, S. bedfordi, S. schwetzi, S. affinis, S. graingeri and S. clydei) carry various flagellates of biochemically or serologically unknown character.

Current research on naturally infected wild-caught sandflies indicates that L. aethiopica promastigotes have close association with structures resembling a peritrophic membrane and invade P. pedifer gut cells. Promastigotes invade the malpighian tubules of S. garnhami and S. antennatus.

Studies on laboratory-reared sandflies show that P. martini is susceptible to L. donovani amastigotes and that cultured promastigotes of L. donovani can survive in the guts of S. schwetzi, S. ingrami and S. adleri.

Experimental infection of sandflies with Leishmania is discussed and priorities for laboratory work set.

Résumé

Cette étude est portée sur le progrès faite dans la comprehension des rapports entre vecteurs et parasites et sur la capacité vectorielle des phlébotomes Kényans depuis le début du 19ème siècle (première découverte des phlébotomes au Kénya).

Sur les 38 espèces de phlébotomes existant au Kenya à l'heure actuelle, trois espèces (Phlébotomus pedifer, P. martini et P. duboscqi) sont porteuses respectivement de Leishmania aethopica, L. donovani et L. major; ceci est confirmé par analyses biochimiques et sérologiques, et 12 autres espèces (P. rhodhiani, Sergentomyia garnhami, S. squamipleuris, S. africanus, S. kirki, S. ingrami, S. antennatus, S. bedfordi, S. schwetzi, S. affinis, S. graingeri et S. clydei) sont porteuses de différentes flagelles dont les caratéristiques biochimiques et sérologiques sont encore inconnues.

La recherche actuelle sur les phlébotomes capturés, à l'état sauvage et naturellement infectés, démontre que les promastigotes L. ethiopica ont des structures semblables à une membrane péritrophique et qu'ils envahissent les noyaux céllulaires des P. pédifer. Les promastigotes envahissent les tubules malpighiennes des S. garnhami et S. antennatus.

Des études sur les phlébotomes élevés en laboratoire montrent que le P. martini est sensible aux amastigotes L. donovani et que les promastigotes cultivés de L. donovani peuvent survivre dans les noyaux cellulaires de S. schwetzi, S. ingrami, et S. adleri.

L'infection expérimentale des phlébotomes avec les Leishmania est discutée et des priorités pour la recherche en laboratoire sont proposées.

Type
Special Section: Leishmaniasis Epidemiology
Copyright
Copyright © ICIPE 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, T. D. (1943) Kala-azar in the East African Forces. Afr. med. J. 20, 172175.Google Scholar
Beach, R. (1983) Localization of Leishmania donovani in experimentally infected Phlebotomine sandflies: an indicator of vector competence. Abstracts of the 4th Annual Medical Scientific Conference p. 53. Kemri & Ketri, Nairobi, Kenya.Google Scholar
Beach, R., Mutinga, M. J., Kaddu, J. B. and Young, D. G. (1982) Laboratory colonization of Phlebotomus martini Parrot (1936) (Diptera: Psychodidae), a vector of visceral leishmaniasis in Kenya. In Proceedings of the 3rd Annual Medical Scientific Conference, p. 12. Kemri & Ketri, Nairobi, Kenya.Google Scholar
Beach, R., Young, D. G. and Mutinga, M. J. (1982) Phlebotomus (Phlebotomus) duboscqi from Kenya: a new record. Trans. R. Soc. trop. Med. Hyg. 76, 707708.CrossRefGoogle Scholar
Beach, R., Young, D. G. and Mutinga, M. J. (1983) New Phlebotomine sandfly colonies: Rearing Phlebotomus martini, Sergentomyia schwetzi and Sergentomyia africana (Diptera: Psychodidae). J. med. Ent. 20, 579584.CrossRefGoogle ScholarPubMed
Beach, R., Kiilu, G., Hendricks, L., Oster, C. and Leeuwenburg, J. (1984) Cutaneous leishmaniasis in Kenya: Transmission of Leishmania major to man by the bite of a naturally infected Phlebotomus duboscqi. Trans. R. Soc. trop. Med. Hyg. 78, 747751.CrossRefGoogle Scholar
Chance, M. L., Schnur, L. F., Thomas, S. C. and Peters, W. (1978) The biochemical and serological taxonomy of Leishmania from the Aethiopian Zoogeographical region of African. Ann. trop. Med. Parasit. 72, 533542.CrossRefGoogle Scholar
Cole, A. C. E., Cosgrove, P. C. and Robinson, G. (1942) A preliminary report of an outbreak of kala-azar in a battalion of East African Rifles. Trans. R. Soc. trop. Med. Hyg. 35, 2531.CrossRefGoogle Scholar
Dedet, J. P., Derouin, F. and Cornet, M. (1978) Infestation spontanée de Phlebotomus duboscqi pardes promastigotes de Leishmania Senegal. C. r. Sci., Paris D 286, 301302.Google Scholar
Duckhouse, D. A. and Lewis, D. J. (1980) Farm Psychodidae. In Catalogue of the Diptera of the Afrotropical Region (Edited by Crosskey, R. W.), pp. 93105. British Museum of Natural History, London.Google Scholar
Feng, L. C. (1951) The role of the peritrophic membrane in Leishmania and trypanosome infections of sandflies. Peking nat. Hist. Bull. 19, 327334.Google Scholar
Heisch, R. B. (1954) Studies in leishmaniasis in East Africa. 1 The epidemiology of an outbreak of kala-azar in Kenya. Trans. R. Soc. trop. Med. Hyg. 48, 450464.CrossRefGoogle Scholar
Heisch, R. B. (1955a) The vector of an outbreak of kala-azar in Kenya. Nature, Lond. 175, 433.CrossRefGoogle ScholarPubMed
Heisch, R. B. (1955b) Leptomonads from experimentally infected sandfly. Trans. R. Soc. trop. Med. Hyg. 49, 305.Google Scholar
Heisch, R. B. (1958) On Leishmania adleri sp. Nov. from lacertid lizards (Latastia sp.) in Kenya. Ann. trop. Med. Parasit. 52, 6871.CrossRefGoogle ScholarPubMed
Heisch, R. B., Guggisberg, C. A. W. and Teesdale, C. (1956) Studies in leishmaniasis in East Africa. II. The sandflies of the Kitui Kala-azar area in Kenya, with description of six new species. Trans. R. Soc. trop. Med. Hyg. 50, 209226.CrossRefGoogle Scholar
Heisch, R. B., Wijers, D. J. B. and Minter, D. M. (1962) In pursuit of the vectors of kala-azar in Kenya. Br. med. J. 1, 14561458.CrossRefGoogle ScholarPubMed
Kaddu, J. B. and Mutinga, M. J. (1981) Leishmania in Kenyan Phlebotomine sandflies—1. Leishmania aethiopica in the midgut of naturally infected Phlebotomus pedifer. Insect Sci. Applic. 2, 245250.Google Scholar
Kaddu, J. B. and Mutinga, M. J. (1982) Leishmanial parasites in unusual sites of development in invertebrate hosts: a possible diagnostic tool. In Proceedings of the 3rd Annual Medical Scientific Conference, pp. 195197. Kemri & Ketri, Nairobi, Kenya.Google Scholar
Kaddu, J. B. and Mutinga, M. J. (1984) Leishmania in Kenyan Phlebotomine sandflies—II. Infection in the malpighianian tubules of Sergentomyia garnhami and S. antennatus. Insect Sci. Applic. 5, 239243.Google Scholar
Killick-Kendrick, R. (1979) Biology of Leishmania in phlebotomine sandflies. In Biology of the Kinetoplastida (Edited by Lumsden, W. H. R. and Evans, D. A.), Vol. 2. Academic Press, London.Google Scholar
Killick-Kendrick, R. and Ward, R. D. (1981) Ecology of Leishmania. Parasitology 82, 143152.Google Scholar
Killick-Kendrick, R., Lainson, R., Leaney, A. J., Ward, R. D. and Shaw, J. J. (1977) Promastigotes of Leishmania b. braziliensis in the gut wall of a natural vector, Psycho-dopygus wellcomei. Trans. R. Soc. trop. Med. Hyg. 71, 381.Google Scholar
Lainson, R. and Shaw, J. J. (1979) The role of animals in the Epidemiology of South American Leishmaniasis. In Biology of the Kinetoplastida (Edited by Lumsden, W. H. R. and Evans, D. A.), Vol. 2, pp. 1116. Academic Press, London.Google Scholar
Lewis, D. J. (1982) A taxonomic review of the genus Phlebotomus (Diptera, Psychodidae). Bull Br. Mus. Nat. Hist. Ent. 45, 121209.Google Scholar
Lewis, D. J., Mutinga, M. J. and Ashford, R. W. (1972) Phlebotomus longipes Parrot and Martin (Diptera: Psychodidae) and a new related species. J. Ent. B41, 119124.Google Scholar
Lewis, D. J., Young, D. G., Fairchild, D. G. and Minter, D. M. (1977) Proposal for a stable classification of the phlebotomine sandfiies (Diptera: Psychodidae). Syst. Ent. 2, 319332.CrossRefGoogle Scholar
Manson-Bahr, P. E. C. (1955) Leishmania skin lesions. Primary sore. Trans. R. Soc. trop. Med. Hyg. 49, 304305.Google Scholar
Manson-Bahr, P. E. C., Southgate, B. A. and Harvey, A. E. C. (1963) Development of kala-azar in Man after inoculation with a Leishmania from a Kenyan sandfly. Br. med. J. 1, 1280–1210.CrossRefGoogle Scholar
Minter, D. M. (1964) The distribution of sandfiies (Diptera Psychodidae) in Kenya. Bull. ent. Res. 55, 205217.CrossRefGoogle Scholar
Minter, D. M., Wijers, D. J. B., Heisch, R. B. and Manson-Bahr, P. E. C. (1962) Phlebotomus martini—a probable vector of kala-azar in Kenya. Br. med. J. 11, 835.CrossRefGoogle Scholar
Molyneux, D. H., Killick-Kendrick, R. and Ward, R. W. (1975) Leishmania in Phlebotomid sandfiies III. The ultrastructure of Leishmania mexicana amazanensis in the midgut and phrynx of Lutzomyia longipalpis. Proc. R. Soc. 190, 341357.Google ScholarPubMed
Mutinga, M. J. (1971) Phlebotomus longipes a vector of cutaneous leishmaniasis in Kenya. Trans. R. Soc. trop. Med. Hyg. 65, 106.CrossRefGoogle ScholarPubMed
Mutinga, M. J. and Ngoka, J. M. (1978) Incrimination of the vectors of visceral leishmaniasis in Kenya. E. Afr. med. J. 55, 338340.Google ScholarPubMed
Mutinga, M. J. and Ngoka, J. M. (1981) Suspected vectors of lizard leishmaniasis in Kenya and their possible role in partial immunization of the human population against Leishmania donovani in kala-azar endemic areas. Insect Sci. Applic. 2, 207210.Google Scholar
Mutinga, M. J. and Odhiambo, T. R. (1982) Studies on infection rates of human-baited anthropophilic sandfiies in Machakos District, Kenya. Insect Sci. Applic. 3, 211214.Google Scholar
Mutinga, M. J., Kaddu, J. B., Arap Siongok, T. K. and Sang, D. K. (1982) Leishmanial infection rates in various Phlebotomine species of Sandfiies in Kenya. In Proceedings of the 3rd Annual Medical Scientific Conference, pp. 191194. Kemri & Ketri, Nairobi, Kenya.Google Scholar
Mutinga, M. J., Kaddu, J. B. and Kyai, F. M. (1983) Studies on vectors of Leishmania major in Kenya. In Proceedings of the 58th Annual Meeting of the American Society for Parasitology, p. 57.Google Scholar
Peters, W., Chance, M. L., Mutinga, M. J., Ngoka, J. M. and Schnur, L. F. (1977) The identification of human and animal isolates of Leishmania from Kenya. Ann. trop. Med. Parasit. 71, 501502.CrossRefGoogle Scholar
Schnur, L. F. and Zuckerman, A. (1977) Leishmanial excreted factor (EF) serotypes in Sudan, Kenya and Ethiopia. Ann. trop. Med. Parasit. 71, 283294.CrossRefGoogle ScholarPubMed
Wijers, D. J. B. and Minter, D. M. (1962) Studies on the vectors of kala-azar in Kenya. 1. Entomological evidence. Ann. trop. Med. Parasit. 55, 462472.CrossRefGoogle Scholar
Wijers, D. J. B. and Kiilu, G. (1984) Studies on the vectors of kala-azar in Kenya, VIII. The outbreak in Machakos district; epidemiological features and possible way of control. Ann. trop. Med. Parasit. 78, 597604.CrossRefGoogle ScholarPubMed
World Health Organization (WHO) (1964) Technical Report Series, No. 701, p. 139, Geneva.Google Scholar