Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-01T01:27:23.707Z Has data issue: false hasContentIssue false

Mosquito Vitellin: Structural and Functional Studies with Monoclonal Antibodies

Published online by Cambridge University Press:  19 September 2011

Manthri S. Ramasamy
Affiliation:
Queensland Institute of Medical Research, Bramston Terrace, Brisbane 4006, Australia
Michael Sands
Affiliation:
Queensland Institute of Medical Research, Bramston Terrace, Brisbane 4006, Australia
Julie Gale
Affiliation:
Queensland Institute of Medical Research, Bramston Terrace, Brisbane 4006, Australia
Ranjan Ramasamy
Affiliation:
Queensland Institute of Medical Research, Bramston Terrace, Brisbane 4006, Australia
Get access

Abstract

Two monoclonal antibodies (Mabs), that react in an enzyme linked immunoabsorbant assay, were generated against Aedes aegypti vitellin. One of these Mabs, VIIG9 that reacted predominantly with a 64 kDa component of Ae. aegypti yolk protein, also recognized 68 kDa and 66 kDa components in the yolk proteins of Culex sitiens and Cx. annulirostris, respectively. Mab VIIG9 has been used to detect vitellin or vitellin precursors in gravid female and non-blood fed nulliparous female mosquitoes as a possible age grading method. The presence of polyclonal and monoclonal antibodies to vitellin in the blood meal did not affect the fecundity of Ae. aegypti.

Résumé

Deux anticorps monoclones (Mabs), qui reagissent dans un essai enzyme lie et immunoabsorbant, ont ete generes contre Aedes aegypti vitelline. L'un de ces Mabs, V11G9 qui a reagi d'une maniere predominante avec un constituant 64 kDa de proteine de vitellus de Ae. aegypti a egalement reconnu les constituants 68kDa et 66 kDa dans les proteines de vitellus de Culex sitiens et de Cx. annulirostris respectivement. On s'est servi de Mab VIIG9 pour decouvrir la vitelline ou les precurseurs de la vitelline dans des femelles pleines et des moustiques femelles non nourries de sang et nullipares comme une methode possible de classer l'age. La presence d'anticorps polyclones et monoclones a la vitelline dans le sang absorbe n'a pas eu d'effect sur la fecondite de Ae. aegypti.

Type
Research Article
Copyright
Copyright © ICIPE 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atlas, S. J., Roth, T. F. and Falcone, A. J. (1978) Purification and partial characterization of Culex pipiens fatigans yolk proteins. Insect Biochem. 8, 111115.CrossRefGoogle Scholar
Borovsky, D. and Whitney, P. L. (1987) Biosynthesis, purification and characterization of Aedes aegypti vitellin and vitellogenin. Arch. Insect Biochem. Physiol. 8, 8199.CrossRefGoogle Scholar
Clements, A. N. and Boocock, M. R. (1984) Ovarian development in mosquitoes: Stages of growth and arrest, and follicular resorption. Physiol. Ent. 9, 18.CrossRefGoogle Scholar
Fairbanks, G., Steck, T. L. and Wallach, D. F. H. (1971) Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochem. 10, 26062624.CrossRefGoogle ScholarPubMed
Gemmill, R. M., Hamblin, M., Galser, R. L., Racioppi, J. V., Marx, J. L., White, B. N., Calvo, J. M., Wolfner, M. F. and Hagedorn, H. H. (1986) Isolation of mosquito vitellogenin genes and induction of expression by 20-hydroxyecdysone. Insect Biochem. 5, 761774.CrossRefGoogle Scholar
Hagedorn, H. H. (1985) The role of ecdysteroids in reproduction. In Comprehensive Insect Physiology, Biochemistry and Pharmacology Endocrinololgy II (Edited by Kerkut, G. A. and Gilbert, L. I.), Vol. 8, pp. 205262. Pergamon Press, Oxford.Google Scholar
Hagedorn, H. H., Kunkel, J. G. and Wheelock, G. (1978) The specificity of an antiserum against mosquito vitellogenin and its use in a radio-immunological precipitation assay for protein synthesis. J. Insect Physiol. 24, 481489.CrossRefGoogle Scholar
Kaaya, G. P. and Alemu, P. (1982) Fecundity and survival of tsetse maintained on immunized rabbits. Insect Sci. Applic. 3, 237241.Google Scholar
Kunkel, J. G., Johnson, M., Hagerty, W. and Sarget, T. D. (1976) Conservation of an active site for oocyte recognition in rapidly evolving vitellogenins. Am. Zool. 16, 264.Google Scholar
Lea, A. O. (1982) Artifactual stimulation of vitellogenesis in Aedes aegypti by 20-hydroxyecdysone. J. Insect Physiol. 28, 173176.CrossRefGoogle Scholar
Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 111, 680685.CrossRefGoogle Scholar
Lane, R. D. (1985) A short-duration polyethylene glycol fusion technique for increasing production of monoclonal antibody-secreting hybridomas. J. Immunol. Methodol. 81, 223228.CrossRefGoogle ScholarPubMed
Lowry, O. H., Rosenbrough, N. J., Farr, A. L. and Randall, R. J. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265275.CrossRefGoogle ScholarPubMed
Lu, Y. H. and Hagedorn, H. H. (1986) Egg development in the mosquito Anopheles albimanus. Int. J. Invert. Repr. Dev. 9, 7994.CrossRefGoogle Scholar
Ma, M., Newton, P. B., Gong, H., Kelly, T. J., Hsu, H. T., Master, E. P. and Borkovec, A. B. (1984) Development of monoclonal antibodies for monitoring Aedes atropalpus vitellogenin. J. Insect Physiol. 30, 529536.CrossRefGoogle Scholar
Ma, M., Gong, H., Perry, B. N. and Borkovec, A. B. (1986) Monitoring Aedes atropalpus vitellogenin production and uptake with hybridoma antibodies. J. Insect Physiol. 32, 207213.CrossRefGoogle Scholar
Raikhel, A. S., Pratt, L. H. and Lea, A. O. (1986) Monoclonal antibodies as probes for processing of yolk protein in the mosquito; Production and characterisation. J. Insect Physiol. 32, 879890.CrossRefGoogle Scholar
Ramasamy, M. S., Ramasamy, R., Kay, B. H. and Kidson, C. (1988) Anti-mosquito antibodies decrease the reproductive capacity of Aedes aegypti. Med. Vet. Ent. 2, 8793.CrossRefGoogle ScholarPubMed
Ramasamy, R. (1987) Studies on glycoproteins in the human malaria parasite Plasmodium falciparum. The identification of a myristilated 45 kDa merozoite membrane glycoprotein. Immunol. Cell. Biol. 65, 419424.CrossRefGoogle Scholar
Thomson, J. A. (1981) Speculations on the evolution of the insect storage proteins. In Evolution and Speciation (Edited by Atchley, W. R. and Woodruff, D. S.), pp. 398416. Cambridge University Press.Google Scholar
Towbin, H., Staeheln, R. and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets. Procedure and some applications. Proc. Nat. Acad. Sci. USA 76, 43504354.CrossRefGoogle ScholarPubMed