Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T22:39:36.289Z Has data issue: false hasContentIssue false

Nature of Lindane Resistance in the Laboratory and Field Strains of Tribolium castaneum Herbst (Coleoptera: Tenebrionidae)

Published online by Cambridge University Press:  19 September 2011

R. N. Barwal
Affiliation:
Department of Entomology, Punjab Agricultural University, Ludhiana-141004, India
R. L. Kalra
Affiliation:
Department of Entomology, Punjab Agricultural University, Ludhiana-141004, India
Get access

Abstract

Laboratory strain-R of Tribolium castaneum, resistant to lindane and multi-resistant strain-L, having developed resistance to lindane and malathion under field conditions, were compared with the standard susceptible strain-S for the nature of resistance to different groups of insecticides. Lindane resistance in both the strains extended to aldrin, dieldrin, endrin and heptachlor. Unlike laboratory strain-R, resistance did not extend to endosulfan in the field strain-L. Both the strains were found susceptible to p, p′-DDT, methoxychlor and allethrin. Also, lindane resistance did not extend to organophosphorous insecticides, viz., malathion, fenitrothion and dichlorovos. Lindane resistance extended to carbaryl and carbofuran, and only slightly to propoxur in the laboratory strain-R, whereas field strain-L remained susceptible to this group of insecticides. Synergist piperonyl-butoxide was found to overcome cross-resistance to endosulfan and propoxur, but to carbaryl in the lindane resistant strain-R. It is, therefore, indicated that one of the three mechanisms responsible for lindane resistance in the laboratory strain of T. castaneum, was stable in the field strain. Thus, the other two mechanisms showing cross-resistance to endosulfan and carbamates were unstable.

Résumé

La souche de laboratoire-R de Tribolium castaneum, resistante au lindane et la souche multiresistante-L, ayant developpées, une resistance au lindane et au malathion en condition au champ (field condition), ont ete comparees avec la souche standart sensible-S pour connaitre le týpe de resistance à differents groups d'insecticides. La resistance au lindane pour les deux sauches s'st etendue 'aldrin, au dieldrin, à l'endrin et à l'heptachlor. La resistance differente de la souche de laboratoire e ne s'st pas etendue a o'endosulfan pour la sauche au champ-L. Les deux sauches ont éte identitiees camme sensible au p, p'-DDT, au methoxychlor et a l'allethrin. Egalement, la resistance au lindane ne s'st pas etendue aux insecticides organophosphores tels malathion, fenitrothion et dichlorovos. La resistance au lindane s'st etendue au carbaryl et au carbofuran, legerement au propoxur paur la sauche de laborateire-R, alons que la sauche au champs-L est restee sensible a ce groupe à insecticides, L'association en synergie piperonyl-butoxide vient à pout de la resistance croijée a l'endosulfan et au propoxur mais non a celle de la sauche-R (résistance au lindane), au carbaryl. Par consequent, cela indiqus que l'un des trois mechanisms, responsibles de la resistance au lindane de la sauche de laborateire T. castaneum est stable dans la sauche au champs. De meme, les deux autres mechanismes mantrant la resistance croijee à l'endosulfan et au carbamate sont instables.

Type
Research Articles
Copyright
Copyright © ICIPE 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agesin, M. and Perry, A. S. (1974) Microsomal mixedfunction oxidises, pp. 537546. In The physiology of Insecta (Edited by Rockstein, M.) Vol. 5. New York, Academic Press.CrossRefGoogle Scholar
Ariaratnam, V. and Georghiou, G. P. (1971) Selection for resistance to carbamate and organophosphorous insecticides in Anopheles albimanus (Diptera: Culicidae). Nature (London), 232, 642644.CrossRefGoogle Scholar
Barnes, W. W. and Ware, G. W. (1965) The absorption and metabolism of C14 labelled endosulfan in housefly. J. econ. Ent. 58, 13651374.CrossRefGoogle Scholar
Barwal, R. N. and Kalra, R. L. (1982) Cross-resistance characteristics of lindane resistant and susceptible strains of Tribolium castaneum (Herbst) (Coleoptera:Tenebrionidae). Entomon 7, 9195.Google Scholar
Barwal, R. N. and Kalra, R. L. (1983) Biological characteristics of the lindane susceptible and resistant strains of Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). Entomon 8, 215220.Google Scholar
Beeman, R. W. and Nanis, S. M. (1986) Malathion resistance alleles and their fitness in the red flour beetle (Coleoptera: Tenebrionidae). J. econ. Ent. 79, 580587.CrossRefGoogle Scholar
Bhatia, S. K. and Pradhan, S. (1972) Studies on resistance to insecticides in Tribolium castaneum (Herbst). V—crossresistance characteristics of a lindane-resistant strain. J. stored Prod. Res. 8, 8993.CrossRefGoogle Scholar
Bhatia, S. K., Yadav, T. D. and Mukerji, P. B. (1971) Malathion resistance in Tribolium castaneum (Herbst) in India. J. stored Prod. Res. 7, 227230.CrossRefGoogle Scholar
Brooks, G. T. and Harison, A. (1964) The effect of pyrethrin synergist especially sesaraex, on the insecticidal potency of hexachlorocyclepentadiene derivatives in the adult housefly. Biochem. Pharmacol. 13, 827840.CrossRefGoogle ScholarPubMed
Brown, A. W. A. and Pal, R. (1971) Insecticide resistance in arthropods. Mongr. Ser. No. 38, WHO, Geneva.Google Scholar
Bruce, W. N. and Dekker, G. C. (1950) Insecticide-resistant housefly. Soap Sanit. Chemicals 26, 122125 and 145–147.Google Scholar
Busvine, J. R. (1967) Cross-resistance and resistance spectra. Bull. World Hlth. Organ. 37, 287292.Google Scholar
Busvine, J. R. and Townsend, W. G. (1963) The significance of BHC degradation in resistant houseflies. Bull. ent. Res. 53, 763768.CrossRefGoogle Scholar
Casida, J. E. (1970) Mixed-function oxidases involvement in the biochemistry of insecticide synergist. J. Agric. Food Chem. 18, 753772.CrossRefGoogle Scholar
Champ, B. R. and Dyte, C. E. (1977) FAO global survey of pesticide susceptibility of stored grain pests. FAO Plant Prot. Bull. 25, 149.Google Scholar
Dyte, C. E. (1970) Insecticide resistance in stored-product insects with special reference to Tribolium castaneum Herbst. Trap. Stored. Prod. Inf. 20, 1318.Google Scholar
Dyte, C. E. (1970) Problem arising from insecticide resistance in storage pests. EPPO Bull. 4, 175189.Google Scholar
Dyte, C. E. and Blackman, D. G. (1970) The spread of insecticide resistance in Tribolium castaneum (Herbst) (Coleoptera:Tenebrionidae). J. stored Prod. Res. 6, 255261.CrossRefGoogle Scholar
Dyte, C. E. and Rowlands, D. G. (1968) The metabolism and synergism of malathion in resistant and susceptible strains of Tribolium castaneum (Herbst) (Coleoptera:Tenebrionidae). J. stored Prod. Res. 4, 157173.CrossRefGoogle Scholar
FAO (1970) Recommended method for the detection and measurement of resistance of agricultural pests to pesticides—6. Tentative method for adults of the flour beetle, Tribolium castaneum (Herbst). FAO Plant Prot. Bull. 18, 107113.Google Scholar
Finney, D. J. (1951) Probit Analysis, pp. 333, 3rd ed.London, Cambridge University Press.Google Scholar
Georghiou, G. P. (1966) Distribution of insecticide resistant housefiies in the neighbouring farms. J. econ. Ent. 59, 341346.CrossRefGoogle Scholar
Georghiou, G. P., Lagunes, A. and Baker, J. D. (1983) Effect of insecticide rotation on the evolution of resistance. In IUPAC Pesticide Chemistry (Edited by Human, ), pp. 183189. New York, Pergamon Press.Google Scholar
Kalra, R. L. and Joshi, G. C. (1974) Studies on the insecticide resistance in rat fleas, Xenopsylla cheopis (Roth). Botyu Kagaku 39, 110115.Google Scholar
Kalra, R. L., Udeaan, A. S. and Bindra, O. S. (1975) Status of insecticide resistance in stored grain insects in Punjab. Indian J. Plant Prot. 3, 186196.Google Scholar
Keiding, J. (1977) Resistance in housefly in Denmark and elsewhere. In Pesticides Management and Insecticide Resistance (Edited by Watson, C. L. and Brown, A. W. A.), pp. 261302. New York, Academic Press.Google Scholar
Metcalf, R. L., Osman, M. F. and Fukuto, T. R. (1967) Metabolism of C14 labelled carbamate insecticides to C14O2 in the housefly. J. econ. Ent. 50, 445450.CrossRefGoogle Scholar
Oppenoorth, F. J. and Nasarat, G. E. (1966) Genetics of dieldrin and lindane resistance in the houseflies following treatment of larvae with malathion. J. econ. Ent. 50, 490493.Google Scholar
Rajak, R. L., Ghate, M. and Krishnamurthy, K. (1973) Bioassay technique for resistance to malathion of stored product insect. Int. Pest Control 15, 1113 and 16.Google Scholar
Srivastava, S. P., Georghiou, G. P., Metcalf, R. L. and Fukuto, T. R. (1970) Carbamate resistance in mosquitoes: The metabolism of propoxur by susceptible and resistant larvae of Culex pipiens fatigans. Bull. World Hlth. Organ. 42, 931942.Google Scholar
Tsukomoto, M., Srivastava, S. P. and Casida, J. E. (1968) Biochemical genetics of housefly resistance to carbamate insecticide chemicals. J. econ. Ent. 61, 5055.CrossRefGoogle Scholar