Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T12:46:25.287Z Has data issue: false hasContentIssue false

Protein Polymorphism in Two Populations of the Brown Ear Tick, Rhipicephalus appendiculatus Neumann (Acari: Ixodidae)

Published online by Cambridge University Press:  19 September 2011

F. N. Baliraine
Affiliation:
Intemational Centre of Insect Physiology and Ecology (ICIPE), P. O. Box 30772, Nairobi, Kenya
E. O. Osir
Affiliation:
Intemational Centre of Insect Physiology and Ecology (ICIPE), P. O. Box 30772, Nairobi, Kenya
S. B. Obuya
Affiliation:
Intemational Centre of Insect Physiology and Ecology (ICIPE), P. O. Box 30772, Nairobi, Kenya
F. J. Mulaa
Affiliation:
Department of Biochemistry, University of Nairobi, P. O. Box 30197, Nairobi, Kenya
Get access

Abstract

Two-dimensional gel electrophoresis was used to compare the protein profiles of two geographically isolated populations of the tick Rhipicephalus appendiculatus Neumann (Acari: Ixodidae) in Kenya. Most of the protein spots were common to both populations, but a number were specific to each population. Since proteins are encoded by genes, the presence of population-specific proteins suggests that there may be genetic differences between the two populations. It is proposed that some of these population-specific proteins might be related to the differences in susceptibility of the ticks to Tlwileria pnrva infection.

Résumé

L'électrophorèse à gel bi-dimensionnel a été utilisée pour comparer les profiles protéjques de deux populations géographiquement isolées de tiques Rhipicephalus appendiculatus Neumann (Acari: Ixodidae) au Kenya. Bien que la plupart des taches protéiques étaient communes aux deux populations, certaines d'entre elles étaient cependant spécifiques à l'une ou l'autre population. Etant donné que les protéines sont codées par géne, la présence de protéines spécifiques à une population suggère l'existence possible de différences spécifiques entre ces deux populations. Ces protéines spécifiques pourraient être liées, en quelque sort, aux différences de prédisposition des tiques aux infections de Tlicileria parva.

Type
Short Communications
Copyright
Copyright © ICIPE 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, R. L. P., Knowler, J. T. and Leader, D. P. (1992) The Biochemistry of the Nucleic Acids. Chapman and Hall Ltd., London. 675 pp.CrossRefGoogle Scholar
Andersen, S. O., Hojrup, P. and Roepstorff, P. (1986) Characterization of cuticular proteins from the migratory locust, Locusta migmtoria. Insect Biochem. 16, 441447.CrossRefGoogle Scholar
Beaty, B. J. and Maquardt, W. C. (Eds) (1996) The Biology of Disease Vectors. The University Press of Colorado, Niwot, Colorado. 632 pp.Google Scholar
Celis, J. E. and Bravo, R. (1984) Two-Dimensional Gel Electrophoresis of Proteins: Methods and Applications. Academic Press, Inc. Orlando Florida. 487 pp.Google Scholar
Collins, F. H., Sakai, R. K., Vernick, K. D., Paskewitz, S., Seeley, D. C., Miller, L. H., Collins, W. E., Campbell, C. and Gwardz, R. W. (1986) Genetic selection of a PZfls/imdnmi-refractory strain of the malaria vector Anopheles gambiae. Science 234, 607610.CrossRefGoogle ScholarPubMed
Dunbar, B. S. (1987) Two-Dimensional Electrophoresis and Immunological Techniques. Plenum Press, New York. 372 pp.CrossRefGoogle Scholar
Gooding, R. H. (1996) Genetic variation in arthropod vectors of disease-causing organisms: Obstacles and opportunities. Clin. Microbiol. Rev. 9, 301320.CrossRefGoogle ScholarPubMed
Hames, B. D. and Rickwood, D. (1990) Gel Electrophoresis of Proteins: A Practical Approach, 2nd edn.IRL Press, Oxford. 383 pp.Google Scholar
Irvin, A. D. and Brocklesby, D. W. (1970) Rearing and maintaining Rhipicephalns appendiculatus in the laboratory. J. Inst. Anim. Tech. 21, 106112.Google Scholar
Jones, P. P. (1980) Analysis of radiolabeled lymphocyte proteins by one- and two-dimensional polyacrylamide gel electrophoresis, pp. 398440. In Selected Methods in Cellular Immunology (Edited by Mishell, B. B. and Shiigi, S. M.). W. H. Freeman and Company, San Francisco.Google Scholar
Kubasu, S. S. (1992) The ability of Rhipicephalns appendiculatus (Acarina: Ixodidae) stocks in Kenya to become infected with Theileria parva. Bull. Entomol. Res. 82, 349353.CrossRefGoogle Scholar
Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature 227, 680685.CrossRefGoogle ScholarPubMed
Maizels, R. M., Blaxter, M. L., Robertson, B. D., and Selkirk, M. E. (1991) Parasite Antigens, Parasite Genes: A Laboratory Manual for Molecular Parasitology. Cambridge University Press, Cambridge. 224 pp.Google Scholar
Mbassa, G. K., Kweka, L. E. and Dulla, P. N. (1998) Immunization against East Coast Fever in field cattle with low infectivity Theileria parva stabilate- Preliminary assessment. Vet. Parasitol. 77, 4148.CrossRefGoogle ScholarPubMed
Mutebi, J. P., Black IV, W. C., Bosio, C. E., Sweeney, W. P. Jr and Craig, G. B. Jr (1997) Linkage map for the Asian tiger mosquito [Aedes (Stegomyia) albopictus] based on SSCP analysis of RAPD markers. J. Heredity 88, 489494.CrossRefGoogle ScholarPubMed
Norval, R. A. I., Lawrence, J. A., Young, A. S., Perry, B. D., Dolan, T. T. and Scott, J. (1991) Tlieileria parva: Influence of vector, parasite and host relationships on the epidemiology of theileriosis in southern Africa. Parasitology 102, 347356.CrossRefGoogle ScholarPubMed
Ochieng, V. O., Osir, E. O., Ochanda, J. O. and Olembo, N. (1993) Temporal synthesis of cuticle proteins during development in Glossina morsitans. Comp. Biochem. Physiol. 105B, 309316.Google Scholar
O'Farrell, P. H. (1975) High-resolution two-dimensional electrophoresis of proteins. J. Biol. Cliem. 250, 40074021.CrossRefGoogle ScholarPubMed
Racine, R. R. and Langley, C. H. (1980) Genetic heterozygosity in a natural population of Mus musculus assessed using two-dimensional electrophoresis. Nature 283, 855857.CrossRefGoogle Scholar
Ratcliffe, N. A., Rowley, A. R., Fitzgerald, S. W. and Rhodes, C. P. (1985) Invertebrate immunity: Basic concepts and recent advances. Int. Rev. Cytol. 97, 183.CrossRefGoogle Scholar
Roitt, I., Brostoff, J. and Male, D. K. (Eds) (1993) Immunology. Mosby-Year Book Europe Ltd., London. 377 pp.Google Scholar
Suzuki, D. T., Griffiths, A. J. E., Miller, J. H. and Lewontin, R. C. (1986) An Introduction to Genetic Analysis, 3rd edn.W. H. Freeman and Company, New York. 612 pp.Google Scholar
Tait, A. (1981) Analysis of protein variation in Plasmodium falciparum by two-dimensional electrophoresis. Mol. Biochem. Parasitol. 2, 205218.CrossRefGoogle Scholar
Tait, A. (1985) Genetics of protein variation in parasitic protozoa, pp. 185203. In Ecology and Genetics of Host-Parasite Interactions No. 11 (Edited by Rollinson, D. and Anderson, R. M.). The Linnean Society of London.Google Scholar
Wray, W., Bonlikas, T., Wray, V. P., and Hancock, R. (1990) Procedure for Monochromatic Silver Staining, pp. 6364. In Gel Electrophoresis of Proteins: A Practical Approach (Edited by Hames, B. D. and Rickwood, D.). ILR Press, Oxford.Google Scholar