Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T07:11:08.118Z Has data issue: false hasContentIssue false

Protozoa of the digestive tract of herbivorous mammals

Published online by Cambridge University Press:  19 September 2011

Burk A. Dehority
Affiliation:
Department of Animal Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, U.S.A.
Get access

Abstract

Occurrence of protozoa in the digestive tract of herbivores is dependent upon the occurrence of an environmentally compatible section of the tract and a retention time for gut contents in that section which exceeds the protozoan generation time. In general, herbivores can be classified as pre-gastric (foregut) or post-gastric (hindgut) fermentors. Fermentation in the foregut has evolved through enlargement of the stomach in some way to slow down ingesta passage rate and provide physical separation of the ingesta from the acid-secreting regions, as well as an adequate production of buffered saliva. Hindgut fermentations occur in the caecum-proximal colon area. Most of the protozoa in the digestive tract of herbivorous mammals belong to the class Kinetofragminophorea in the orders Prostomatida, Trichostomatida and Entodiniomorphida. They are anaerobic, live in conjunction with a large bacterial population and can ferment the structural polysaccharides of plants. End products of protozoal fermentation are similar to those of the bacterial population, i.e. volatile fatty acids, lactic acid, carbon dioxide and hydrogen. Additional products of the fermentation are vitamins and microbial protein which are subsequently utilized by foregut fermentors, whereas these products are essentially lost in hindgut fermentors unless they practice coprophagy. Only limited information is available on digestive and metabolic pathways of the gut protozoa, primarily because of our inability to grow them in axenic culture. Specific faunas appear to be associated with site of fermentation, animal species and diet. Diet in turn can affect pH and contents turnover time, both of which are very important in the establishment and growth of a protozoan population in the digestive tract.

Résumé

La présence de protozoaires dans le tractus intestinal des herbivores est fonction de la présence d'une section environnementale compatible du tractus et d'un temps de rétention du contenu intestinal dans cette section excédant la durée de génération du protozoaire. De manière générale les herbivores peuvent être classés en fermenteurs pré-gastriques (intestin antérieur) ou en fermenteurs post-gastriques (intestin postérieur). La fermentation dans l'intestin antéroeur a évolué à travers un agrandissement de l'estomac, pour en quelque sorte ralentir le débit du bol alimentaire et permettre une séparation physique du bol alimentaire et des régions à sécrétion acide, ainsi qu' à travers une production adéquate de salive tamponnée. Les fermentations dans l'intestin postérieur se produisent dans la région du colon caeco-proximal. La plupart des protozaires du tractus intestinal des mammifères herbivores appartiennent à la classe des Ciliés, ordres des Gymnostomatida, des Trichostomatida et des Entodiniomorphida. Ils sont anaerobiques, vivent en conjonction avec une large population bactérienne et peuvent fermenter les polysaccharides structuraux des plantes. Les produits finaux de la fermentation protozoaire sont similaires à ceux de la population bactérienne, c'est-à-dire acides gras volatiles, acide lactique, dioxide de carbone et hydrogène. Les produits additionnels de la fermentation sont des vitamines et des proteines microbiennes qui sont subséquemment utilisées par les fermenteurs “à intestin antérieur” alors que ces produits sont essentiellements perdus chez les fermenteurs “à intestin postérieur” sauf si ils pratiquent la coprophagie. Seulement des informations limitées sont disponibles sur les mécanismes digestifs et métaboliques des protozaires intestinaux, principalement à cause de notre incapacité à les cultiver en culture axénique. Des faunes spécifiques paraissent être associées au site de fermentation, à l'espèce animale et au régime alimentaire. La régime alimentaire peut à son tour affecté le pH et la durée de rétention du contenu, ces 2 facteurs étant très importants dans l'établissement et la croissance d'une population protozoaire dans le tractus intestinal.

Type
Research Article
Copyright
Copyright © ICIPE 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abe, M., Shibui, H., Iriki, T. and Kumeno, F. (1973) Relation between diet and protozoal population in the rumen. Br. J. Nutr. 29, 197202.CrossRefGoogle ScholarPubMed
Abe, M., Iriki, T., Tobe, N. and Shibui, H. (1981) Sequestration of holotrich protozoa in the reticulo-rumen of cattle. Appl. Environ. Microbiol. 41, 758765.Google Scholar
Abou Akkada, A. R. and El-Shazly, K. (1964) Effect of absence of ciliate protozoa from the rumen on microbial activity and growth of lambs. Appl. Microbiol. 12, 384390.CrossRefGoogle Scholar
Abou Akkada, A. R. and el-Shazly, K. (1965) Effect of presence or absence of rumen ciliate protozoa on some blood components, nitrogen retention, and digestibility of food constitutents in lambs. J. Agric. Sci. 64, 251255.CrossRefGoogle Scholar
Adam, K. M. G. (1951) The quantity and distribution of the ciliate protozoa in the large intestine of the horse. Parasitology 41, 301311.CrossRefGoogle ScholarPubMed
Argenzio, R. A., Lowe, J. E., Pickard, D. W. and Stevens, C. E. (1974a) Digesta passage and water exchange in the equine large intestine. Am. J. Physiol. 226, 10351042.Google Scholar
Argenzio, R. A., Southworth, M. and Stevens, C. E. (1974b) Sites of organic acid production and absorption in the equine gastrointestinal tract. Am. J. Physiol. 226, 10431050.CrossRefGoogle ScholarPubMed
Bailey, R. W. and Clarke, R. T. J. (1963) Carbohydrase activity of rumen Entodinium species from sheep on a starch-free diet. Nature 198, 787.Google Scholar
Balch, C. C. (1950) Factors affecting the utilization of food by dairy cows. I. The rate of passage of food through the digestive tract. Br. J. Nutr. 4, 361388.Google Scholar
Barnard, E. A. (1969) Biological function of pancreatic ribonuclease. Nature 221, 340344.CrossRefGoogle ScholarPubMed
Bauchop, T. (1977) Foregut fermentation. In Microbial Ecology of the Gut (Edited by Clarke, R. T. J. and Bauchop, T.), pp. 223250. Academic Press, London.Google Scholar
Bauchop, T. (1979) The rumen ciliate Epidinium in primary degradation of plant tissues. Appl. Environ. Microbiol. 37, 12171223.Google Scholar
Bauchop, T. and Clarke, R. T. J. (1976) Attachment of the ciliate Epidinium Crawley to plant fragments in the sheep rumen. Appl. Environ. Microbiol. 32, 417422.CrossRefGoogle ScholarPubMed
Bauchop, T. and Martucci, R. W. (1968) Ruminant-like digestion of the Langur monkey. Science 161, 698700.CrossRefGoogle ScholarPubMed
Becker, E. R. (1932) The present status of problems relating to the ciliates of ruminants and equidae. Q. Rev. Biol. 7, 282297.CrossRefGoogle Scholar
Becker, E. R. and Hsiung, T. S. (1929) The method by which ruminants acquire their fauna of infusoria, and remarks concerning experiments on the host-specificity of these protozoa. Proc. natn. Acad. Sci. U.S.A. 15, 684690.CrossRefGoogle ScholarPubMed
Becker, E. R., Schulz, J. A. and Emmerson, M. A. (1930) Experiments on the physiological relationships between the stomach infusoria of ruminants and their hosts, with a bibliography. Iowa St. J. Sci. 4, 215251.Google Scholar
Bird, S. H. and Leng, R. A. (1978) The effects of defaunation of the rumen on the growth of cattle on low-protein high-energy diets. Br. J. Nutr. 40, 163167.CrossRefGoogle ScholarPubMed
Bonhomme-Florentin, A. (1974) Contribution a l'étude de la physiologie des ciliés entodiniomorphes endocommen-saux des ruminants et des équides. Ann. Sci. nat. Zool. Biol. Anim. 16, 155283.Google Scholar
Brumpt, E. and Joyeux, Ch. (1912) Sur un infusoire nouveau parasite du chimpanzé Troglodytella abrassarti n. g. n. sp. Bull. Soc. Path. exot. 5, 499503.Google Scholar
Bryant, M. P. and Small, N. (1960) Observations on the ruminai microorganisms of isolated and inoculated calves. J. Dairy Sci. 43, 654667.Google Scholar
Buisson, J. (1923) Sur quelques infusoires nouveaux ou peu connus parasites des mammifères. Annls Parasit. hum. Comp. 1, 209246.Google Scholar
Castle, E. J. (1956) The rate of passage of foodstuffs through the alimentary tract of the goat. Br. J. Nutr. 10, 1523.CrossRefGoogle ScholarPubMed
Christiansen, W. C., Woods, W. and Burroughs, W. (1964) Ration characteristics influencing rumen protozoal populations. J. Anim. Sci. 23, 984988.Google Scholar
Church, D. C. (1969) Digestive Physiology and Nutrition of Ruminants, Vol. 1. O.S.U. Book Stores, Corvallis, Oregon.Google Scholar
Clarke, R. T. J. (1964) Ciliates of the rumen of domestic cattle (Bos taurus L.). N. Z. J. agric. Res. 7, 248257.CrossRefGoogle Scholar
Clarke, R. T. J. (1965) Diurnal variation in the numbers of rumen ciliate protozoa in cattle. N. Z. J. agric. Res. 8, 19. 1–9.CrossRefGoogle Scholar
Clarke, R. T. J. (1977) Protozoa in the rumen ecosystem. In Microbial Ecology of the Gut (Edited by Clarke, R. T. J. and Bauchop, T.), pp. 251275. Academic Press, London.Google Scholar
Clemens, E. T. and Stevens, C. E. (1979) Sites of organic acid production and patterns of digesta movement in the gastro-intestinal tract of the racoon. J. Nutr. 109, 11101116.Google Scholar
Clemens, E. T., Stevens, C. E. and Southworth, M. (1975) Sites of organic acid production and pattern of digesta movement in the gastro-intestinal tract of swine. J. Nutr. 105, 759768.CrossRefGoogle Scholar
Coleman, G. S. (1960) The cultivation of sheep rumen oligotrich protozoa in vitro. J. gen. Microbiol. 22, 555563.CrossRefGoogle ScholarPubMed
Coleman, G. S. (1969a) The cultivation of the rumen ciliate Entodinium simplex. J. gen. Microbiol. 57, 8190.Google Scholar
Coleman, G. S. (1969b) The metabolism of starch, maltose, glucose and some other sugars by the rumen ciliate Entodinium caudatum. J. gen. Microbiol. 57, 303332.CrossRefGoogle Scholar
Coleman, G. S. (1975) The interrelationship between rumen ciliate protozoa and bacteria. In Digestion and Metabolism in the Ruminant (Edited by McDonald, I. W. and Warner, A. C. I.), pp. 149164. University of New England Publishing Unit, Armidale, N.S.W., Australia.Google Scholar
Coleman, G. S. (1978) The metabolism of cellulose, glucose and starch by the rumen ciliate protozoan Eudiplodinium maggii. J. gen. Microbiol. 107, 359366.Google Scholar
Coleman, G. S. (1979) Rumen ciliate protozoa. In Biochemistry and Physiology of Protozoa (Edited by Levandowsky, M. and Hutner, S. H.), Vol. 2, 2nd edn, pp. 381408. Academic Press, New York.Google Scholar
Coleman, G. S. (1980) Rumen ciliate protozoa. In Advances in Parasitology (Edited by Lumsden, W. H. R., Muller, R. and Baker, J. R.), pp. 121173. Academic Press, New York.Google Scholar
Coleman, G. S., Davies, J. I. and Cash, M. A. (1972) The cultivation of the rumen ciliates Epidinium ecaudatum caudatum and Poly plastron multivesiculatum in vitro. J. gen. Microbiol. 73, 509521.CrossRefGoogle Scholar
Coleman, G. S. and Laurie, J. I. (1974) The metabolism of starch, glucose, amino acids, purines, pyrimidines and bacteria by three Epidinium spp. isolated from the rumen. J. gen. Microbiol. 85, 244256.CrossRefGoogle Scholar
Coleman, G. S., Laurie, J. I. and Bailey, J. E. (1977) The cultivation of the rumen ciliate Entodinium bursa in the presence of Entodinium caudatum. J. gen. Microbiol. 101, 253258.CrossRefGoogle ScholarPubMed
Coleman, G. S., Laurie, J. I., Bailey, J. E. and Holdgate, S. A. (1976) The cultivation of celluloytic protozoa isolated from the rumen. J. gen. Microbiol. 95, 144150.Google Scholar
Cunha, A. da (1914) Sobre os ciliados intestinais dos mamiferos. Mem. Inst. Oswaldo Cruz 6, 212215.Google Scholar
Cunha, A. da (1915) Sobre os ciliados intestinaes dos mamiferos II. Mem. Inst. Oswaldo Cruz 7, 139145.CrossRefGoogle Scholar
Cunha, A. da and Muniz, J. (1925) Contribiucño para o conhecimento dos ciliados parasitas dos mamiferos do Brasil. Sciencia Medica 3, 732747.Google Scholar
Cunha, A. da and Muniz, J. (1928) Nouveau cilié parasite du caecum du Tapirus americanus. Description d'un nouveau génère. C.r. Soc. Biol. 98, 631632.Google Scholar
Dearth, R. N., Dehority, B. A. and Potter, E. L. (1974) Rumen microbial numbers in lambs as affected by level of feed intake and dietary diethylstilbesterol. J. Anim. Sci. 38, 991996.Google Scholar
Dehority, B. A. (1970) Occurrence of the ciliate protozoa Bütschlia parva Schuberg in the rumen of the ovine. Appl. Microbiol. 19, 179181.Google Scholar
Dehority, B. A. (1974) Rumen ciliate fauna of Alaskan moose (Alces americana), musk-ox (Ovibos moschatus) and Dall mountain sheep (Ovis dalli). J. Protozool. 21, 2632.CrossRefGoogle Scholar
Dehority, B. A. (1978) Specificity of rumen ciliate protozoa in cattle and sheep. J. Protozool. 25, 509513.Google Scholar
Dehority, B. A. (1979) Ciliate protozoa in the rumen of Brazilian water buffalo, Bubalus bubalis Linnaeus. J. Protozool. 26, 536544.Google Scholar
Dehority, B. A. (1986) Microbes in the foregut of arctic ruminants. In Control of Digestion and Metabolism in Ruminants (Edited by Milligan, L. P., Grovum, W. L. and Dobson, A.), pp. 307325. Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
Dehority, B. A. and Mattos, W. R. S. (1978) Diurnal changes and effect of ration on concentrations of the rumen ciliate Charon ventriculi. Appl. Environ. Microbiol. 36, 953958.Google Scholar
Denis, C., Jeuniaux, Ch., Gerebtzoff, M. A. and Goffart, M. (1967) La digestion stomacale d'un paresseux; l'unan Choloepus Hoffmani Peters. Annls Soc. r. Zool. Belg. 97, 929.Google Scholar
Dogiel, V. A. (1923) On sexual differentiation in the Infusoria. Q. J. Microsc. Sci. 67, 219232.Google Scholar
Dogiel, V. A. (1925) Nouveaux infusoires de la famille des Ophryoscolécidés parasites d'antilopes africaines. Annls Parasit. 3, 116142.Google Scholar
Dogiel, V. A. (1926) Sur quelques infusories nouveaux habitant l'estomac du dromadaire (Camelus dromedarius). Annls Parasit. 4, 241271.Google Scholar
Dogiel, V. A. (1927) Monographie der familie Ophryoscolecidae. Arch. Protistenk. 59, 1288.Google Scholar
Dogiel, V. A. (1928) La faune d'infusoires habitant l'estomac du buffle et du dromadaire. Annls Parasit. 6, 323338.Google Scholar
Dogiel, V. A. (1932) Beschreibung Einiger Neuer Vertreter der Familie Ophryoscolecidae aus Afrikanischen Antilopen Nebst Revision der Infusorienfauna Afrikanischer Wiederkäuer. Arch. Protistenk. 77, 92107.Google Scholar
Dogiel, V. A. (1947) The phylogeny of the stomachinfusorians of ruminants in the light of palaeontological and parasitologicU data. Q. J. Microsc. Sci. 88, 337343.Google Scholar
Dogiel, V. A. and Winogradowa-Fedorowa, T. (1930) Experimentelle Untersuchungen zur Biologie der Infusorien des Wiederkäuermagens. Wiss. Arch. Landwirtsch. Abu B 3, 172188.Google Scholar
Eadie, J. M. (1962) The development of rumen microbial populations in lambs and calves under various conditions of management. J. gen. Microbiol. 29, 563578.CrossRefGoogle Scholar
Eadie, J. M. and Hobson, P. N. (1962) Effect of the presence or absence of rumen ciliate protozoa on the total rumen bacterial count in lambs. Nature 193, 503.CrossRefGoogle ScholarPubMed
Eadie, J. M. and Gill, J. C. (1971) The effect of the absence of rumen ciliate protozoa on growing lambs fed on a roughage-concentrate diet. Br. J. Nutr. 26, 155167.CrossRefGoogle ScholarPubMed
Eloff, A. K. and Hoven, W. van (1980) Intestinal protozoa of the African elephant Loxodonta africana (Blumen-bach). S. Afr. J. Zool. 15, 8390.Google Scholar
Fonseca, F. da (1939) Protozoarios parasitas. I. Ciliado gigante, Muniziella cunhai, gen. n., sp. n., parasita de Hydrochoerus capybara (Holotricha. Pycnothrichidae). Mem. Inst. Butanlan 12, 165172.Google Scholar
Goodson, J. (1981) Effects of an abrupt change in ration, from all forage to all concentrate, on the microbial populations and ecology of the pony cecum. Ph.D. thesis, The Ohio State University, Columbus.Google Scholar
Gruby, D. and Delafond, O. (1843) Recherches sur des animalcules se développant dans l'estomac et dans les intestins pendant la digestion des animaux herbivores et carnivores. C.r. Acad. Sci. 17, 13041308.Google Scholar
Harrop, C. J. F. and Barker, S. (1972) Blood chemistry and gastrointestinal changes in the developing red kangaroo (Megaleia rufa, Desmarest). Aust. J. exp. Biol. med. Sci. 50, 245249.Google Scholar
Hendrichs, H. (1965) Vergleichende untersuchungdes Wie-derkauverhaltens. Biol. Zentralbl. 84, 681751.Google Scholar
Herwig, R. P., Staley, J. T., Nerini, M. K. and Braham, H. W. (1984) Baleen whales: Preliminary evidence for fore-stomach microbial fermentation. Appl. Environ. Microbiol. 47, 421423.CrossRefGoogle Scholar
Hill, W. C. O. (1952) The external and visceral anatomy of the olive colobus monkey (Procolobus verus). Proc. zool. Soc. Lond. 122, 127186.Google Scholar
Hoare, C. A. (1937) A new cycloposthiid ciliate (Triplumaria hamertoni gen. n., sp. n.) parasitic in the Indian rhinoceros. Parasitology 29, 559569.CrossRefGoogle Scholar
Hollande, A. and Bâtisse, A. (1959) Contribution à l'étude des infusoires parasites du coecum de l'hydrocheire (Hydrocheirus capybara L.). 1. La famille des Cyclo-posthiidae. Mem. Inst. Oswaldo Cruz 57, 116.Google Scholar
Honigberg, B. M., Balamuth, W., Bovee, E. C., Corliss, J. O., Gojdics, M., Hall, R. P., Kudo, R. R., Levine, N. D., Loeblich, A. R. Jr, Weiser, J. and Wenrich, D. H. (1964) A revised classification of the phylum protozoa. J. Proto-zool. 11, 720.Google Scholar
Hörnicke, H. and Björnhag, G. (1980) Coprophagy and related strategies for digesta utilization. In Digestive Physiology and Metabolism in Ruminants (Edited by Ruckebusch, Y. and Thivend, P.), pp. 707730. MTP Press, Lancaster.CrossRefGoogle Scholar
Hoven, W. van (1974) Ciliate protozoa and aspects of the nutrition of the hippopotamus in The Kruger National Park. S. Afr. J. Sci. 70, 107109.Google Scholar
Hoven, W. van (1978) Development and seasonal changes in the rumen protozoan population in young blesbok (Damaliscus dorcasphillipsi Harper, 1939). S. Afr. J. wildl. Res. 8, 127130.Google Scholar
Hoven, W. van (1983) Rumen ciliates with descrption of two new species from three African reedbuck species. J. Protozool. 30, 688691.Google Scholar
Hoven, W. van, Hamilton-Attwell, V. L. and Grobler, J. H. (1979) Rumen ciliate protozoa of the sable antelope Hippotragus niger. S. Afr. J. Zool. 14, 3742.Google Scholar
Hoven, W. van and Prins, R. A. (1977) Carbohydrate fermentation by the rumen ciliate Dasytricha ruminantium. Protistologica 13, 599606.Google Scholar
Hoven, W. van, Prins, R. A. and Lankhorst, A. (1981) Fermentative digestion in the African elephant. S. Afr. J. wildl. Res. 11, 7886.Google Scholar
Howard, B. H. (1959) The biochemistry of rumen protozoa.' 1. Carbohydrate fermentation by Dasytricha and Iso-tricha. Biochem. J. 71, 671675.CrossRefGoogle Scholar
Hsiung, T. S. (1930a) A monograph on the protozoa of the large intestine of the horse. lowa St. J. Sci. 4, 359423.Google Scholar
Hsiung, T. S. (1930b) Some new ciliates from the large intestine of the horse. Trans. Am. microsc. Soc. 49, 3441.Google Scholar
Hsiung, T. S. (1935) On some new ciliates from the mule with the description of a new genus. Bull. Fan meml Inst. Biol. 6, 8194.Google Scholar
Hsiung, T. S. (1936) A survey of the ciliates of Chinese equines. Bull. Fan meml Inst. Biol. 6, 289304.Google Scholar
Hume, I. D. and Warner, A. C. I. (1980) Evolution of microbial digestion in mammals. In Digestive Physiology and Metabolism in Ruminants (Edited by Ruckebusch, Y. and Thivend, P.), pp. 665684. MTP Press, Lancaster.Google Scholar
Hungate, R. E. (1966) The Rumen and Its Microbes. Academic Press, New York.Google Scholar
Hungate, R. E. (1972) Relationships between protozoa and bacteria of the alimentary tract. Am. J. din. Nutr. 25, 14801484.Google Scholar
Hungate, R. E. (1978) The rumen protozoa. In Parasitic Protozoa (Edited by Kreier, J. P.), Vol. II, pp. 655695. Academic Press, New York.Google Scholar
Ibrahim, E. A., Ingalls, J. R. and Stanger, N. E. (1970) Effect of dietary diethylstilbestrol on populations and concentrations of ciliate protozoa in dairy cattle. Can. J. Anim. Sci. 50, 101106.CrossRefGoogle Scholar
Imai, S., Abe, M. and Ogimoto, K. (1981) Ciliate protozoa from the rumen of the Japanese serow, Capricornis crispus (Temminck). Jap. J vet. Sci. 43, 359367.CrossRefGoogle ScholarPubMed
Imai, S., Ogimoto, K. and Fujita, J. (1981) Rumen ciliate protozoal fauna of water buffalo, Bubalus Bubalis (Linnaeus) in Okinawa, Japan. Bull. Nippon Vet. Zootech. Coll. 29, 8285.Google Scholar
Imai, S., Shimizu, M., Kinoshita, M., Toguchi, M., Ishii, T. and Fujita, J. (1982) Rumen ciliate protozoal fauna and composition of the cattle in Japan. Bull. Nippon Vet. Zootech. Coll. 31, 7074.Google Scholar
Jameson, A. P. (1925) A note on the ciliates from the stomach of the mouse deer (Tragulus meminna Milne-Edwards) with the description of Entodinium ovalis n. sp. Parasitology 17, 406409.CrossRefGoogle Scholar
Kern, D. L., Slyter, L. L., Weaver, J. M., Leffel, E. C. and Samuelson, G. (1973) Pony cecum vs steer rumen: The effect of oats and hay on the microbial ecosystem. J. Anim. Sci. 37, 463469.Google Scholar
Kleynhans, C. J. and Hoven, W. van (1976) Rumen protozoa of the giraffe with a description of two new species. E. Afr. wildl. J. 14, 203214.Google Scholar
Klopfenstein, T. J., Purser, D. B. and Tyznik, W. J. (1966) Effects of defaunation on feed digestibility, rumen metabolism and blood metabolites. J. Anim. Sci. 25, 765773.Google Scholar
Kofoid, C. A. (1935) On two remarkable ciliate protozoa from the caecum of the Indian elephant. Proc. natn. Acad. Sci. U.S.A. 21, 501506.Google Scholar
Kopperi, A. J. (1935) Uber die nicht-pathogene Protozoenfauna des Blinddarms einiger Nagetiere. Ann. Zool. Soc. Zool. Bot. Fen. Vanamo. 3, 192.Google Scholar
Kuhn, H.-J. (1964) Zur Kenntnis von bau und funktion des Magens der Schlankaffen (Colobinae). Folia Primal. 2, 193221.Google Scholar
Kurihara, Y., Eadie, J. M., Hobson, P. N. and Mann, S. O. (1968) Relationship between bacteria and ciliate protozoa in the sheep rumen. J. gen. Microbiol. 51, 267288.Google Scholar
Langer, P. (1974) Stomach evolution in the Artiodactyla. Mammalia 38, 295314.Google Scholar
Latteur, B. (1966) Thoracodinium vorax ciliate du caecum de l'elephant des Indes. Acta zool. path, antverp. 41, 83102.Google Scholar
Latteur, B. (1967) Helicozoster indicus n. Gen. n. Sp. ciliate holotriche du caecum de l'elephant des Indes. Acta zool. path, antverp. 43, 93105.Google Scholar
Latteur, B. and Bousez, M.-P. (1970) Rhabdothorax macrostegon n. Gen. n. Sp. cilie cycloposthiidae du colon de l'elephant d'asie. Annls Soc. r. Zool. Belg. 99, 193213.Google Scholar
Latteur, B. and Dartevelle, Z. (1971) Pterodinium micro- lithovorax, cilie spirotriche de caecum de l'elephant d'Afrique. Cellule 69, 4761.Google Scholar
Latteur, B. and Dufey, M. M. (1967) Reforme systématique de la famille des Cylcoposthiidae Poche, 1913. Acta zool. Path, antverp. 44, 125139.Google Scholar
Latteur, B., Tuffrau, M. and Wespes, G. (1970) Triplumaria selenica n. s. p., cilie spirotriche du colon de l'elephant d'Afrique. Protistologica 6, 319330.Google Scholar
Levine, N. D., Corliss, J. O., Cox, F. E. G., Deroux, G., Grain, J., Honigberg, B. M., Leedale, G. F., Loeblich, A. R., Lom, J., Lynn, D., Merinfeld, E. G., Page, F. C., Poljansky, G., Sprague, V., Vavra, J. and Wallace, F. G. (1980) A newly revised classification of the protozoa. J. Protozool. 27, 3758.CrossRefGoogle ScholarPubMed
Lintem-Moore, S. (1973) Incorporation of dietary nitrogen into microbial nitrogen in the forestomach of the Kangaroo Island wallaby Protemnodon eugenii (Desmarest). Cornp. Biochem. Physiol. 44A, 7582.Google Scholar
Lubinsky, G. (1957a) Studies on the evolution of the Ophryoscolecidae (Ciliata: Oligotricha). I. A new species of Entodinium with “caudatum”, “loboso-spinosum”, and “dubardi” forms, and some evolutionary trends in the genus Entodinium. Can. J. Zool. 35, 111133.Google Scholar
Lubinsky, G. (1957b) Studies on the evolution of the Ophryoscolecidae (Ciliata: Oligotricha). II. On the origin of the higher Ophryoscolecidae. Can. J. Zool. 35, 135140.CrossRefGoogle Scholar
Lubinsky, G. (1957c) Studies on the evolution of the Ophryoscolecidae (Ciliata: Oligotricha). III. Phylogeny of the Ophryoscolecidae based on their comparative morphology. Can. J. Zool. 35, 141159.CrossRefGoogle Scholar
Lubinsky, G. (1964) Ophryoscolecidae of a guanaco from the Winnipeg zoo. Can. J. Zool. 42, 159.CrossRefGoogle Scholar
Luther, R., Trenkle, A. and Burroughs, W. (1966) Influence of rumen protozoa on volatile acid production and ration digestibility in lambs. J. Anim. Sci. 25, 11161122.Google Scholar
McBee, R. H. (1977) Fermentation in the hindgut. In Microbial Ecology of the Gut (Edited by Clarke, R. T. J. and Bauchop, T.), pp. 185222. Academic Press, London.Google Scholar
McNaught, M. L., Owen, E. C., Henry, K. M. and Kon, S. K. (1954) The utilization of non-protein nitrogen in the bovine rumen. 8. The nutritive value of the proteins of preparations of dried rumen bacteria, rumen protozoa and brewer's yeast for rats. Biochem. J. 56, 151156.CrossRefGoogle Scholar
Mann, S. O. and Orskov, E. R. (1973) The effect of rumen and post-rumen feeding of carbohydrates on the cecal microflora of sheep. J. appl. Bad. 36, 475484.Google Scholar
Moir, R. J. (1965) The comparative physiology of ruminantlike animals. In Physiology of Digestion in the Ruminant (Edited by Dougherty, R. W.), pp. 114. Butterworth, Washington, D.C.Google Scholar
Moir, R. J. (1968) Ruminant digestion and evolution. In Handbook of Physiology (Edited by Code, C. F.), Sect. 6, Vol. 5, pp. 26732694. American Physiological Society, Washington, D.C.Google Scholar
Morii, H. (1979) The viable counts of microorganisms, pH values, amino acid contents, ammonia contents and volatile fatty acid contents in the stomach fluid of marine little toothed whales. Bull. Fac. Fish. Nagasaki Univ. 47, 5560.Google Scholar
Naga, M. A., Abou Akkada, A. R. and el-Shazly, K. (1969) Establishment of rumen ciliate protozoa in cow and water buffalo (Bos bubalus L.) calves under late and early weaning systems. J. Dairy Sci. 52, 110112.Google Scholar
Ogimoto, K. and Imai, S. (1981) Atlas of Rumen Microbiology. Japan Scientific Societies Press, Tokyo.Google Scholar
Ohwaki, K., Hungate, R. E., Lotter, L., Hofman, R. R. and Maloiy, G. (1974) Stomach fermentation in East African colobus monkeys in their natural state. Appl. Microbiol. 27, 713723.Google Scholar
Onodera, R. and Henderson, C. (1980) Growth factors of bacterial origin for the culture of the rumen oligotrich protozoon, Entodinium caudatum. J. appl. Bad. 48, 125133.Google Scholar
Orpin, C. G. and Letcher, A. J. (1978) Some factors controlling the attachment of the rumen holotrich protozoa Isotricha intestinalis and I. prostoma to plant particles in vitro. J. gen. Microbiol. 106, 3340.Google Scholar
Ozeki, K., Imai, S. and Katsuno, M. (1973) On the distribution of the ciliated protozoa in the large intestine of horse. Tohoku J. agric. Res. 24, 86101.Google Scholar
Parra, R. (1978) Comparison of foregut and hindgut fermentation in herbivores. In The Ecology of Arboreal Folivores (Edited by Montgomery, G. G.), pp. 205229. Smithsonian Institution Press, Washington, D.C.Google Scholar
Prins, R. A. and Geelen, M. J. H. (1971) Rumen characteristics of red deer, fallow deer and roe deer. J. wildl. Mgt 35, 673680.Google Scholar
Prins, R. A. and Hoven, W. van (1977) Carbohydrate fermentation by the rumen ciliate Isotrichia prostoma. Protistologica 13, 549556.Google Scholar
Purser, D. B. and Buechler, S. M. (1966) Amino acid composition of rumen organisms. J. Dairy Sci. 49, 8184.Google Scholar
Purser, D. B. and Moir, R. J. (1959) Ruminal flora studies in the sheep. IX. The effect of pH on the ciliate population of the rumen in vivo. Aust. J. agric. Res. 10, 555564.Google Scholar
Quinn, L. Y., Burroughs, W. and Christiansen, W. C. (1962) Continuous culture of ruminal microorganisms in chemically defined medium. II. Culture medium studies. Appl. Microbiol. 10, 583592.Google Scholar
Reichenow, E. (1920) Den wiederkäuer Infusorien Verwandte Formen aus Gorilla und Schimpanse. Arch. Protistenk. 41, 133.Google Scholar
Romer, A. S. (1966) Vertebrate Paleontology. University of Chicago Press, Chicago, Illinois.Google Scholar
Simpson, G. G. (1945) Principles of classification and a classification of mammals. Bull. Am. Mus. nat. Hist. 85, 1350.Google Scholar
Strelkow, A. (1929) Weiteres über die neuen arten der Gattung Cycloposthium aus dem darme des Pferdes und des Esels. Zool. Anz. 83, 6370.Google Scholar
Strelkow, A. (1931) Über die Fauna des Colons beim Zebra. Zool. Anz. 94, 3754.Google Scholar
Strelkow, A. (1939) Parasitical infusoria from the intestine of Ungulata belonging to the family Equidae. Uchen. Zap. leningr. Pedagog. Inst. Gert. 17, 1262. In Russian.Google Scholar
Sugden, B. and Oxford, A. E. (1952) Some cultural studies with holotrich ciliate protozoa of the sheep's rumen. J. gen. Microbiol. 7, 145153.CrossRefGoogle ScholarPubMed
Thurston, J. P. and Grain, J. (1971) Holotrich ciliates from the stomach of Hippopotamus amphibius with descriptions of two new genera and four new species. J. Protozool. 18, 133141.Google Scholar
Thurston, J. P. and Noirot-Timothée, C. (1973) Entodiniomorph ciliates from the stomach of Hippopotamus amphibius with descriptions of two new genera and three new species. J. Protozool. 20, 562565.Google Scholar
Thurston, J. P., Noirot-Timothée, C. and Annan, P. (1968) Fermentative digestion in the stomach of Hippopotamus amphibius (Artiodactyla: Suiformes) and associated ciliate protozoa. Nature 218, 882883.Google Scholar
Ulyatt, M. J., Dellow, D. W., Reid, C. S. W. and Bauchop, T. (1975) Structure and function of the large intestine of ruminants. In Digestion and Metabolism in the Ruminant (Edited by McDonald, I. W. and Warner, A. C. I.), pp. 119133. Univ. of New England Publishing Unit, Armidale, N.S.W., Australia.Google Scholar
Vallenas, A., Cummings, J. F. and Munnell, J. F. (1971) A gross study of the compartmentalized stomach of two new-world camelids, the llama and guanaco. J. Morph. 134, 399424.Google Scholar
Vallenas, A. and Stevens, C. E. (1971) Volatile fatty acid concentrations and pH of llama and guanaco forestomach digesta. Cornell Vet. 61, 239252.Google Scholar
Warner, A. C. I. (1966) Diurnal changes in the concentrations of microorganisms in the rumens of sheep fed limited diets once daily. J. gen. Microbiol. 45, 213235.Google Scholar
Weller, R. A. and Pilgrim, A. F. (1974) Passage of protozoa and volatile fatty acids from the rumen of the sheep and from a continuous in vitro fermentation system. Br. J. Nutr. 32, 341351.Google Scholar
Westerling, B. (1970) Rumen ciliate fauna of semi-domestic reindeer (Rangifer tarandus L.) in Finland: Composition, volume and some seasonal variations. Acta zool. fenn. 127, 176.Google Scholar
Wilkinson, R. C. and Hoven, W. van (1976) Rumen ciliate fauna of the springbok (Antidorcas marsupialis) in southern Africa. Zool. Afr. 11, 122.Google Scholar
Wolska, M. (1967) Study on the family Blepharocorythidae Hsiung. III. Raabena bella gen. n., sp. n. from the intestine of the Indian elephant. Acta protozool. 4, 285290.Google Scholar
Wolska, M. (1968) Study on the family Blepharocorythidae Hsiung. IV. Pararaabena dentata gen. n., sp. n. from the intestine of Indian elephant. Acta protozool. 5, 219224.Google Scholar