Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-13T04:44:30.926Z Has data issue: false hasContentIssue false

Relative Activity of Various Esterases in Six Pakistani Strains of the Lesser Grain Borer, Rhyzopertha dominica (Fabricius)

Published online by Cambridge University Press:  19 September 2011

Abdul Rauf Shakoori
Affiliation:
Cell and Molecular Biology Laboratory, Department of Zoology, University of the Punjab, New Campus, Lahore-54590, Pakistan
Khawaja Abdul Mujeeb
Affiliation:
Cell and Molecular Biology Laboratory, Department of Zoology, University of the Punjab, New Campus, Lahore-54590, Pakistan
Shazia Maqbool
Affiliation:
Cell and Molecular Biology Laboratory, Department of Zoology, University of the Punjab, New Campus, Lahore-54590, Pakistan
Syed Shahid Ali
Affiliation:
Cell and Molecular Biology Laboratory, Department of Zoology, University of the Punjab, New Campus, Lahore-54590, Pakistan
Get access

Abstract

Acetylcholinesterase (AChE), arylesterase (AE), carboxylesterase (CE), and cholinesterase (ChE) activities were determined in six adult populations of the lesser grain borer, Rhyzopertha dominica (Fabricius) (Coleoptera: Bostrichidae) collected from grain warehouses in various areas of Punjab, namely Lahore (L), Sialkot (S), Wazirabad (W), Multan (M), Chkhawatni (C), and Karachi (K). The multiple forms of esterases were resolved by polyacrylamide gel electrophoresis (PAGE) and activities determined biochemically, using a spectrophotometer. All the strains had the same AChE activity except Sialkot strain, which had 46% more activity than the susceptible K strain. Similarly K, S, W, L, and C strains exhibited almost the same AE level, whereas the M strain showed 29% lower activity than K strain. The CE activity of L (352%), S (198%) and C (214%) strains and ChE activity of L (178%) and C (317%) strains were significantly higher than that of K strain. The total esterases of L, S and C strains showed respectively 152%, 63% and 73% higher activity than the susceptible K strain. The PAGE pattern of various esterases coincided with the biochemical analysis. The variable thickness of the bands in the gel indicated relative esterase induction that could be correlated with the development of resistance in R. dominica.

Résumé

Les activités acétylcholinestérasique, arylestérasique, carboxylestérasique, et cholinestérasique ont été déterminées dans six populations d'adultes du foreur de grain, Rliyzopertlia dominica (F.), collectés à partir des entrepôts de grain dans diverses régions du Punjab, à savoir Lahore (L), Sialkot (S), Wazitabad (W), Multan (M), Chkhawatni (C), et Karachi (K). Diverses formes d'estérases ont été résolues par électrophorèse à gel de polyacrylamide et les activités biochimiquement déterminées par spectrophotomètrie. Toutes les souches avaient la mê;me activité acétylcholinestérasique, excepté la souche S, qui a eu 46% de plus d'activité que la souche K sensible. Les souches K, S, W, L, et C ont montré presque le même niveau d'arylestérase, tandis que la souche M avait 29% de moins d'activité que la souche K. L'activité carboxylestérasique des souches L (352%), S (198%) et C (214%) et l'activité cholinestérasique des souches L (178%) et C (317%) étaient sensiblement plus élevées que celles de la souche K. Toutes les estérases des souches L, S et C ont respectivement montré 152%, 63% et 73% d'activité plus élevée que la souche K sensible. La configuration de l'électrophorèse à gel de polyacrylamide de diverses estérases a coïncidé avec leurs analyses biochimiques. La variabilité de l'épaisseur des bandes dans le gel a suggeré l'induction relative d'estérase qui pourrait ê;tre corrélée avec le développement de la résistance au sein des pupulations de R. dominica.

Type
Research Articles
Copyright
Copyright © ICIPE 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdel-Aal, Y. A. I., Lampert, E. P., Roe, R. M. and Semtner, P. J. (1992) Diagnostic esterases and insecticide resistance in the tobacco aphid, Myzus nicotianae Blackman (Homoptera: Aphididae). Pestic. Biochem. Physiol. 43, 123133.CrossRefGoogle Scholar
Anspaugh, D. D., Kennedy, G. G. and Roe, R. M. (1995) Purification and characterization of resistant associated esterase from the Colorado potato beetle, Leptinotarsa decemlineata (Say). Pestic. Biochem. Physiol. 53, 8496.CrossRefGoogle Scholar
Augustinsson, K. B. (1961) Multiple forms of esterases in vertebrate blood plasma. Ann. N.Y. Acad. Sci. 94, 844866.CrossRefGoogle Scholar
Beeman, R. W. and Wright, V. F. (1990) Monitoring for resistance to Chlorpyrifos-methyl, Pirimiphos-methyl and Malathion in Kansas populations of stored product insects. J. Kansas Entomol. Soc. 63, 385392.Google Scholar
Callanghan, A., Malcolm, C. A. and Hemingway, J. (1991) Biochemical studies of A and B carboxylesterase from organophosphate resistant strain of an Italian Culex pipiens (Diptera: Culicidae). Pestic. Biochem. Physiol. 41, 198206.CrossRefGoogle Scholar
Chen, W. L. and Sun, C. N. (1994) Purification and characterization of carboxyl esterase of rice brown planthopper, Nilaparvata lugens Stal. Insect Biochem. Mol. Biol. 24, 347355.CrossRefGoogle Scholar
Cuany, A., Handani, J., Berge, J., Fournier, D., Raymond, M., Georghiou, G. P. and Pasteur, N. (1993) Action of esterase Bl on chlorpyrifos in organophosphate resistant Culex mosquitoes. Pestic. Biochem. Physiol. 45, 16.CrossRefGoogle Scholar
Devonshire, A. L. (1975a) Studies of acetylcholinesterase from house flies (Musca domestica) resistant and susceptible to organophosphorus insecticides. Biochem. J. 149, 463469.CrossRefGoogle Scholar
Devonshire, A. L. (1975b) Studies of carboxylesterases of Myzus persicae resistant and susceptible to organophosphorus insecticide. Proc. 8th Brit. Insectic. Fungic. Conf., pp. 6773.Google Scholar
Devonshire, A. L. (1989) The role of electrophoresis in the biochemical detection of insecticide resistance, pp. 363374. In Electrophoretic Studies on Agricultural Pests (Edited by Loxdale, H. D. and Hollander, J. D.) Clarendon Press, Oxford.Google Scholar
Devonshire, A. L. and Moores, G. D. (1982) A carboxylesterase with broad substrate specificity causes organophosphorous, carbamate and pyrethroid resistance in peach potato aphids (Myzus persicae). Pestic. Biochem. Physiol. 18, 235246.CrossRefGoogle Scholar
Haites, N., Don, M. and Masters, C. J. (1972) Heterogeneity and molecular weight interrelationship of esterase isozymes of several invertebrate species. Comp. Biochem. Physiol. B42, 303323.Google Scholar
Han, Z., Moores, G. D., Denholm, I. and Devonshire, A. L. (1998) Association between biochemical markers and insecticide resistance in the cotton aphid, Aphis gossypii Glover. Pestic. Biochem. Physiol. 62, 164171.CrossRefGoogle Scholar
Hart, N. H. and Cook, M. (1976) Comparative analysis of tissue esterases of zebra danio (Brachydanio rerio) and the pearl danio (B. albolineatus) by disc gel electrophoresis. Comp. Biochem. Physiol. B54, 356364.Google Scholar
Holmes, R. S. and Masters, C. J. (1967) Developmental multiplicity and isoenzyme status of cavain esterases. Biochem. Biophys. Acta 132, 379384.Google Scholar
Hughes, P. B. and Devonshire, A. L. (1982) The biochemical basis of resistance to organophosphorous insecticides in the sheep blowfly, Lucilia cuprina. Pestic. Biochem. Physiol. 18, 289297.CrossRefGoogle Scholar
Junge, W. and Klees, H. (1981) Arylesterase, pp. 814. In Method of Enzymatic Analysis. 3rd Ed., vol. IV Enzyme 2: Esterases, Glycosidases, Ligases. Verlag Chemie, Florida.Google Scholar
Lewis, G. A. and Madge, D. S. (1984) Esterase activity and associated insecticide resistance in the damson-hop aphid, Phorodom hunuli (Hemiptera: Aphididae). Bull. Entomol. Res. 74, 227238.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. and Randall, R. J. (1951) Protein measurement with the phenol reagent. J. Biol. Chem. 193, 265275.CrossRefGoogle ScholarPubMed
Maruyama, Y., Yasutomi, K. and Ogita, Z. I. (1984) Electrophoretic analysis of esterase isozymes in organophosphate resistant mosquitoes (Culex pipiens). J. Insect Biochem. 14, 181188.CrossRefGoogle Scholar
Matsumura, F. (1985) Toxicity of Insecticide. 2nd edition. Plenum Press, New York. 501 pp.CrossRefGoogle Scholar
Matsumura, F. and Brown, A. W. A. (1963) Studies on carboxylesterase in Malathion resistant Culex tarsalis. J. Econ. Entomol. 56, 381388.CrossRefGoogle Scholar
Mourya, D. T., Hemingway, J. and Leake, C. J. (1993) Changes in enzyme with age in four geographical strains of Aedes aegypti and their association with insecticide resistance. Med. Vet. Entomol. 1, 1116.CrossRefGoogle Scholar
Needam, P. H. and Sawicki, R. M. (1971) Diagnosis of resistance to organophosphorous insecticides in Myzus persicae. Nature (Lond.) 230, 125126.CrossRefGoogle Scholar
Oppenoorth, F. J. (1985) Biochemistry and genetics of insecticide resistance, pp. 731773. In Comprehensive Insect Physiology, Biochemistry and Pharmacology vol. 12 (Edited by Kerkut, G. A. and Gilbert, L. J.). Pergamon Press, New York.Google Scholar
Pacheco, I. A., Sartori, M. R. and Bolonhezi, S. (1990) Resistance to Malathion, Pirimiphos-methyl and Fenitrothion in Coleoptera from stored grains, pp. 10291037. In Proceedings of 5th International Working Conference on Stored Products Protection, 1990. Institut National de la Recherche Agronomique, Bordeaux, France.Google Scholar
Park, N. J. and Kamble, S. T. (1998) Comparison of esterases between life stages and sexes of resistant and susceptible strains of German cockroach (Dictyoptera: Blatellidae). J. Econ. Entomol. 91, 10511057.CrossRefGoogle Scholar
Parkin, E. A. (1956) Stored product entomology. Annu. Rev. Entomol 1, 223240.CrossRefGoogle Scholar
Rappaport, F., Fischel, J. and Pinto, N. (1959) An improved method for the determination of cholinesterase activity in serum. Clin. Chem. Acta 4, 277.CrossRefGoogle ScholarPubMed
Raymond, M., Pasteur, N., Georghiou, G. P., Mellon, R. B., Wirth, M. C. and Hawley, M. (1987) Detoxification esterases new to California, USA in organophosphate resistant Culex quinquefasciatus (Diptera: Culicidae). J. Med. Ent. 24, 2427.CrossRefGoogle ScholarPubMed
Saleem, M. A. and Shakoori, A. R. (1987) Joint effects of Dimilin and Ambush, on enzyme activities of Tribolium castaneum larvae. Pestic. Biochem. Physiol. 29, 127131.CrossRefGoogle Scholar
Saleem, M. A. and Shakoori, A. R. (1989) Some macromolecular abnormalities developed by the interaction of Malathion and Permethrin and subsequent refeeding in Tribolium castaneum larvae. Arch. Insect Biochem. Physiol. 11, 203215.Google Scholar
Siegfried, B. D. and Scott, J. G. (1992) Biochemical characterization of hydrolytic and oxidative enzymes in insecticide resistant and susceptible strains of the German cockroach (Dictyoptera: Blattellidae). J. Econ. Entomol. 85, 10921098.CrossRefGoogle ScholarPubMed
Sloderbeck, P. E., Chowdhury, M. A., Depew, L. J. and Buschman, L. L. (1991) Green bug (Homoptera: Aphididae) resistance to parathion and chlorpyrifos-methyl. J. Kansas Entomol. Soc. 1, 14.Google Scholar
Steele, R. G. D. and Torrie, J. H. (1981) Principles and Procedures of Statistics. McGraw Hill, Tokyo. 633 pp.Google Scholar
Storey, C. L., Saver, D. B. and Walker, D. (1984) Present use of pest management practices in wheat, corn and oats stored on the farm. J. Econ. Entomol. 77, 784788.CrossRefGoogle Scholar
Toutant, J. P. (1989) Insect acetylcholinesterase: Catalytic properties, tissue distribution and molecular forms. Prog. Neurobiol. (N.Y.) 32, 423446.CrossRefGoogle ScholarPubMed
Zettler, J. L. and Brady, U. E. (1975) Acetylcholinesterase isozymes of the housefly thorax; in vivo inhibition by organophosphorous insecticides. Pestic. Biochem. Physiol. 5, 471476.CrossRefGoogle Scholar
Zettler, J. L. and Cuperus, G. W. (1990) Pesticide resistance in Tribolium castaneum and Rhyzopertha dominica in wheat. J. Econ. Entomol. 83, 16771681.CrossRefGoogle Scholar