Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T07:09:03.807Z Has data issue: false hasContentIssue false

Respiratory rate and energy utilization by Macrotermes carbonarius (Hagen) (Isoptera, Termitidae, Macrotermitinae) in Penang, Malaysia

Published online by Cambridge University Press:  19 September 2011

Lilory D. McComie
Affiliation:
Research Division, Ministry of Food Production and Marine Exploitation, Central Experiment Station, Centeno via Arima P.O., Trinidad and Tobago, West Indies
G. Dhanarajan
Affiliation:
School of Biological Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
Get access

Abstract

There were significant variations in oxygen consumption and carbon dioxide evolution of Macrotermes carbonarius (Hagen) among the soldiers and workers over a 10-hr experimental period. This suggested that the insects exhibited rhythmic respiratory behaviour in spite of being separated from their nest system and in the stressful situation of confinement of a respiratory flask at 29°C. The correlation between body fresh weight (mg) and respiratory rate ml O2/mg fresh wt/hr was significant. A respiratory quotient of 1.0–1.1 suggested that glucose was the respiratory metabolic substrate utilized and that both aerobic and anaerobic processes could have been taking place. Most of the leaf litter imported into the mound was utilized by the fungus on the fungus comb for metabolism with the release of carbon dioxide, heat and water. The heat released was sufficient to maintain the brood chamber temperature at 29.1 ± 03°C despite fluctuations of the ambient temperature and the temperature of the surrounding soil.

Résumé

Cette étude montre qu'il y avait des variations importantes dans l' utilisation variation d'oxygène at l'évolution le gazearbonique parmi des soldatset des ouvriers de M. carbonarius dans une periode d'experimentation de dix heurs. Ce semble indiquer que les insectes se montrent une maniere respiratoire rhythmique malgré leur sepération de systeme de termitière. A 20°C le rapport entre le poids frais du corps (mg) et le taux de respiration rel O2/mg poids frais/hr était important. Un quotient respiratoire de (1.0–1.1) indique que le glucose était le substrat metabolique utilise et que les procès aerobique et anaerobique ont en lieu.

La plupart d'énergie de la litière de feuilles apportee dans le nid était utilisé par les fongussur le meule à champignons resultant en l'évolution de gaz carbonique, de la chaleur et de l'eau. La chaleur libere était suffisante pour maintenir la température de couver à 29.1 ± 0.2°C malgré les fluctuations de la temperature ambiente et de celle du sol environment.

Type
Research Articles
Copyright
Copyright © ICIPE 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abe, T. (1978) The role of termites in the breakdown of dead wood in the forest floor of Pasoh Study Area. Malay Nat. J. 30, 391404.Google Scholar
Abe, T. (1979a) Studies on the distribution and ecological role of termites in a lowland rainforest of West Malaysia 2. Food and feeding habitats of termites in Pasoh Forest. Jpn. J. Ecol. 29, 121135.Google Scholar
Abe, T. (1979b) Studies on the distribution and ecological role of termites in lowland rainforest 3. Distribution and abundance of termites in Pasoh Forest Reserve. Jpn. J. Ecol. 29, 337351.Google Scholar
Abe, T. (1980) Studies on the distribution and ecological role of termites in a lowland rainforest of West Malaysia. 4. The role of termites in the process of wood decomposition in Pasoh Forest Reserve. Rev. Ecol. Biol. Sol. 17, 2340.Google Scholar
Darlington, J. P. E. C. (1984) A method for sampling populations of large termite nests. Ann. Appl. Biol. 104, 427436.CrossRefGoogle Scholar
Hardy, R. N. (1972) Temperature and Animal Life. Institute of Biology's Studies in Biology No. 35, Edward Arnold Publishers, London.Google Scholar
Harper, H. A. (1973) Review of Physiological Chemistry. Large Medical Publishers, California.Google Scholar
Hébrant, F. (1970) Circadian rhythm of respiratory metabolism in whole colonies of the termites Cubilermes exiguas. J. Insect Physiol. 16, 12291235.CrossRefGoogle Scholar
Ho, T. M. (1977) The biology of the termite Macrotermes carbonarius with respect to the foraging behaviour and aggression. M. Sc. Dissertation. Universiti Sains Malaysia.Google Scholar
Jander, R. and Daumer, K. (1974) Guideline and gravity of orientation of blind termites foraging in the open. Insectes Soc. 21, 4569.CrossRefGoogle Scholar
John, O. (1925) Termiten von Ceylon der Malayischen halbinisel. Sumatra, Java und den Aru-Inseln. Treubia, D, 360419.Google Scholar
La Fage, J. P. and Nutting, W. C. (1979) Respiratory gas exchange in the dry wood termite Marginitermes hubbardi (Banks) (Isoptera: Kalotermitidae). Sociobiol. 4, 257267.Google Scholar
Lee, K. and Wood, T. (1971) Termites and Soils. Academic Press, London and New York.Google Scholar
Luscher, M. (1962) Air-conditioned termite nests. Sci. Am. 205, 138145.CrossRefGoogle Scholar
Matsumoto, T. (1976) The role of termites in an Equatorial Rainforest of West Malaysia 1. Population density; biomass, carbon, nitrogen and calorific content and respiratory rate. Oecologia (Berlin) 22, 153178.CrossRefGoogle Scholar
Matsumoto, T. and Abe, T. (1979) The role of termites in an equatorial rainforest of West Malaysia II. Leaf litter. Consumption on the forest floors. Oecologia (Berlin) 38, 261274.CrossRefGoogle Scholar
McComie, L. D. (1981) An ecological study of Macrotermes carbonarius (Hagen) (Insecta, Termitidae, Macrotermitinae). M.Sc. thesis. Universiti Sains Malaysia, Malaysia.Google Scholar
Peakin, G. J. and Josens, P. G. (1978) Respiration and energy flow. In Production Ecology of Ants and Termites (Edited by Brian, M. V.), pp. 111163.Google Scholar
Rohrmann, G. F. (1977) Biomass, distribution and respiration of colony components of Macrotermes ukuzii Fuller (Isoptera, Termitidae, Macrotermitinae). Sociobiol. 2, 283293.Google Scholar
Rohrmann, G. F. (1978) The original, structure and nutritional importance of the comb in two species of Macrotermitinae (Insecta, Isoptera). Pedobiologia 18, 8998.CrossRefGoogle Scholar
Roonwal, M. L. (1969) Termites of the oriental region. In Biology of Termites (Edited by Krishna, K. and Weesner, F. M), Vol. 11, pp. 315384. Academic Press, New York and London.Google Scholar
Sands, W. A. (1969) The association of termites and fungi. In Biology of Termites (Edited by Krishna, K. and Weesner, F.). Vol. I, pp. 495524. Academic Press, New York and London.CrossRefGoogle Scholar
Sands, W. A. (1972) Problems in attempting to sample tropical subterranean termite populations. Ecologia Polska 20, 2331.Google Scholar
Umbriet, W. W., Burris, R. R. and Stauffer, J. F. (1972) Manometrie Techniques. Fifth edition. Burges Publishing Co., Minneapolis.Google Scholar
Watson, J. P. (1972) Some observations on the water relations of mounds of Macrotermes natalensis (Haveland). Insectes Soc. 19, 8793.CrossRefGoogle Scholar
Wood, T. G. and Sands, W. A. (1978) The role of termites in ecosystems. In Production Ecology of Ants and Termites (Edited by Brian, M. V.), pp. 245292, IBP Handbook 13, Cambridge University Press.Google Scholar
Zar, J. H. (1974) Biostatistical Analysis, First Edition. Prentice Hall, New Jersey.Google Scholar