Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T08:49:19.607Z Has data issue: false hasContentIssue false

Spodoptera frugiperda resistance in developing panicles of sorghum accessions

Published online by Cambridge University Press:  19 September 2011

Moussa M. Diawara
Affiliation:
Department of Entomology, University of Georgia, Athens, GA 30602, USA
B. R. Wiseman
Affiliation:
USDA-ARS-IBPMRL, Tifton, GA 31793, USA
D. J. Isenhour
Affiliation:
Department of Entomology, University of Georgia, Tifton, GA 31793, USA
Get access

Abstract

Experiments were conducted in 1989 to evaluate converted sorghum accessions for preflowering extended panicle and soft-dough stage panicle feeding resistance to fall armyworm, Spodoptera frugiperda (J. E. Smith), by incorporating plant tissue into artificial insect diet. Spodoptera frugiperda biological parameters measured were larval and pupal weights, mean duration of the larval stage, time to adult eclosion, survivorship, fecundity, net reproductive rate, intrinsic rate of increase, and relative fitness. The converted lines IS 2246C, IS 2403C, IS 2825C, IS 7007C, IS 8337C, IS 12592C, IS 12612C, IS 12657C, IS 12666C, and IS 12681C were more resistant to both preflowering and soft-dough stage panicle feeding by S. frugiperda than the resistant check NK Savanna 5. The genotypes IS 1340C, IS 2553C, IS 2569C, IS 6911C, IS 7498C, IS 12219C, IS 12617C, IS 12662C, and IS 12664C were more resistant than the resistant check to S. frugiperda feeding in the soft-dough stage, but not in the preflowering stage of panicle development. Plant antibiosis was the major mechanism of resistance in these lines at both stages of the panicle development.

Résumé

Des lignées naines de sorgho, Sorghum bicolor (L.) Moench ont été évaluées pour déterminer leur résistance à la chenille légionnaire, Spodoptera frugiperda (J. E. Smith) durant la phase préfloraison et la phase patte douce de la panicule. La resistance a été étudiée en incorporant des échantillons de panicule des différentes lignées dans le diète de l'insecte. Les paramètres biologiquesde l'insecte qui ont été mesurés étaient le poids des larves, le poids des nymphes, la durée de la phase larvale, le temps d'apparition de 1'adulte, le taux de survivance, la fécondité, le taux net de réproduction, le taux intrinsec d'accroissement et l'aptitude relative. Les lignées naines IS 2246C, IS 2403C, IS 2825C, IS 7007C, IS 8337C, IS 12592C, IS 12612C, IS 126S7C, IS 12666C et IS 12681C étaient plus résistantes à la chenille que le témoin résistant NK Savanna 5 durant la phase préfloraison aussi bien que la phase patte douce de la panicule. Les lignées IS 1340C, IS 2S53C, IS 2S69C, IS 6911C, IS 7498C, IS 12219C, IS 12617C, IS 12662C et IS 12664C étaient plus résistantes que le témoin résistant durant la phase patte douce de la panicule, mais pas durant la phase préfloraison. L'antibiose était le méchanisme majeur de la résistance chez ces lignées de sorghoaux deux phases de la panicule qui ont été testées.

Type
Research Articles
Copyright
Copyright © ICIPE 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrews, K. L. (1988) Latin American research on Spodoptera frugiperda (Lepidoptera: Noctuidae). Fla. Entomol. 71, 630653.CrossRefGoogle Scholar
Ashley, T. R., Wiseman, B. R., Davis, F. M. and Andrews, K. L. (1989) The fall armyworm: A bibliography. Fla. Entomol. 72, 152202.CrossRefGoogle Scholar
Birch, L. C. (1948) The intrinsic rate of natural resistance. increase of an insect population. J. Anim. Ecol. 17, 1526.CrossRefGoogle Scholar
Bums, R. E. (1971) Methods of estimation of tannin in grain sorghum. Agron. J. 63, 511512.Google Scholar
Burton, R. L. and Perkins, W. D. (1989) Rearing the corn earworm and the fall armyworm for maize resistance studies. In Toward Insect Resistant Maize for the Third World. Proceedings, International Symposium on Methodologies for Developing Host Plant Resistance to Maize Insects (Edited by Russell, N.), pp. 3745. International Maize and Wheat Improvement Center (CIMMYT). El Batan, Mexico.Google Scholar
Cavalli-Sforza, L. L. and Bodmer, W. F. (1971) Genetics of Human Populations. Freeman and Co. San Francisco.Google Scholar
Diawara, M. M., Wiseman, B. R., Isenhour, D. J. and Lovell, G. R. (1990) Resistance to fall armyworm in converted sorghums. Fla. Entomol. 73, 111117.CrossRefGoogle Scholar
Diawara, M. M., Wiseman, B. R. and Isenhour, D. J. (1991a) Mechanism of whorl stage resistance to fall armyworm (Lepidoptera: Noctuidae) among converted sorghum accessions. Entomol. exp. appl. 60, 225231.CrossRefGoogle Scholar
Diawara, M. M., Hill, N. S., Wiseman, B. R. and Isenhour, D. J. (1991b) Panicle-stage resistance to Spodoptera frugiperda (Lepidoptera: Noctuidae) in converted sorghum accessions. J. econ. Entomol. 84, 337344.CrossRefGoogle Scholar
Hallman, G. J., Teetes, G. L. and Johnson, J. W. (1984) Relationship of sorghum midge (Diptera: Cecidomyiidae) density to damage to resistant and susceptible sorghum hybrids. J. econ. Entomol. 77, 8387.CrossRefGoogle Scholar
Henderson, C. F., Kinzer, H. G. and Thompson, E. G. (1966) Growth and yield of grain sorghum infested into the whorl with fall armyworm. J. econ. Entomol. 59, 10011003.CrossRefGoogle Scholar
Hough, J. A. and Pimentel, D. (1978) Influence of host foliage on development, survival and fecundity of gypsy moth. Environ. Entomol. 7, 97102.CrossRefGoogle Scholar
Leuck, D. B. and Perkins, W. D. (1972) A method of estimating fall armyworm progeny reduction when evaluating control achieved by host-plant resistance. J. econ. Entomol. 65, 482483.CrossRefGoogle Scholar
Luginbill, P. (1928) The fall armyworm. US Dept. Agric. Tech. Bull. No. 34.Google Scholar
Owens, J. C. (1975) An explanation of terms used in insect resistance in plants. Iowa St. J. Res. 49, 513517.Google Scholar
PaiMer, R. H. (1951) Insect Resistance in Crop Plants. The MacMillan Co. New York.Google Scholar
Price, P. W. (1984) Insect Ecology. John Wiley and Sons, New York.Google Scholar
SAS Institute (1985) SAS User's Guide: Statistics, version 5 ed. SAS Institute, Cary, NC.Google Scholar
Snedecor, G. A. and Cochran, W. G. (1980) Statistical Methods, 7th ed.Iowa State University, Ames.Google Scholar
Stephens, J.C., Miller, F. R. and Rosenow, D. T. (1967) Conversion of alien sorghums to early, combine genotypes. Crop Sci. 7, 396.CrossRefGoogle Scholar
Swindale, L. D. (1989) Welcome address. In Proceedings, International Workshop on Sorghum Stem Borers (Edited by Nwanze, K. F.), pp. 3. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). Patancheru, A. P. 502 324, India.Google Scholar
Teetes, G. L. (1980) Breeding sorghums resistant to insects. In Breeding Plants Resistant to Insects (Edited by Maxwell, F. G. and Jennings, P. R.), pp. 457485. John Wiley and Sons, New York.Google Scholar
Teetes, G. L. (1985) Insect resistant sorghums in pest management. Insect Sci. Applic. 6, 443451.Google Scholar
Teetes, G. L., Seshu Reddy, K. V., Leuschner, K. and House, L., R. (1983) Sorghum insect identification handbook. Information Bull. No. 12. ICRISAT. Patancheru, A. P. India.Google Scholar
Wiseman, B. R., Pitre, H. N. and Fales, S. L. (1984) Differential growth responses of fall army worm larvae on developing sorghum seeds incorporated into a meridic diet. Fla. Entomol. 67, 357367.CrossRefGoogle Scholar
Wiseman, B. R., Pitre, H. N., Fales, S. L., and Duncan, R. R. (1986) Biological effects of developing sorghum panicles in a meridic diet on fall armyworm (Lepidoptera: Noctuidae) development. J. econ. Entomol. 79, 16371640.Google Scholar
Young, W. R. and Teetes, G. L. (1977) Sorghum entomology. Annu. Rev. Entomol. 22, 193198.CrossRefGoogle Scholar