Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T07:04:37.989Z Has data issue: false hasContentIssue false

Studies on carbohydrate, protein and lipid levels in normal and stress conditions in fat body and integument as compared to whole body during development of rice moth, Corcyra cephalonica (St.)

Published online by Cambridge University Press:  19 September 2011

Debjani Mandal
Affiliation:
Insect Physiology Laboratory, Zoology Department, Burdwan University, Burdwan-713 104, India
D. K. Chaudhuri
Affiliation:
Insect Physiology Laboratory, Zoology Department, Burdwan University, Burdwan-713 104, India
Get access

Abstract

Incorporated in this paper were the results of a study made on the quantitative variation of total carbohydrate, protein and lipid in whole body, fat body and integument of the larval and pupal developmental stages in rice moth, Corcyra cephalonica (St.) a storage grain pest. All three macromolecules referred to in case of whole body, exhibited a progressively decreasing trend from larva to pupa. In fat body total carbohydrate and protein contents were more in pupa than larva, while in integument the said nutrients were less in pupa than larva, showing the reverse results. The lowering down of the nutrients' level under stress caused by pyrethrum (a botanical insecticide) was also observed. The physiological and statistical significance of these findings was discussed.

Résumé

On trouvera dans cette thèse les résultats d'une étude faite sur la variation quantitative de la totalité de carbohydrate, protein et lipid dans le corps humain. Elle a étudié la transformation catégorique de larve et de pupe observé à la nutrition avec la Corcyra cephalonica (St.). Ces trois moeromolecules dans le corps humain démontrent progressivement une tendance decroissante de la larvae à la pupe. Dans le corps gras, l'existence naturelle de carbohydrate et de protein est supérieure dans la pupe que dans la larve. Tandis que, la transformation remarqué après administration de nutriment est imférieure dans la pupe que dans la larve, démontrant un résultat inverse. Une étude sur les faits observé dans le signification physiologique endiminuant le niveau de nutriuent par application de pyrèthrum (un insecticide botanique) est également élaborée.

Type
Research Articles
Copyright
Copyright © ICIPE 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agrell, I. (1964) Physiological and biochemical changes during insect development. In The Physiology of Insects (Edited by Rockstein, N.), pp. 91148. Academic Press, New York.Google Scholar
Bade, M. L. and Wyatt, G. R. (1962) Metabolic conversions during pupation of Cecropia silk worm. I. Deposition and utilization of nutrient reserves. Biochem. J. 83, 470478.CrossRefGoogle Scholar
Banerjee, U. and Chaudhuri, D. K. (1985) Effect of nicotine on the biochemical components in the central nervous system of burrowing carnivorous insect Schizodactylus monostrosus Drury. (Insecta: Orthoptera: Schizodactylidae). Proc. Indian Nat. Sci. Acad. B 51, 194201.Google Scholar
Bhatta, R. S. and Krishna, S. S. (1984) Effects on some nutritional factors on the free amino acids and protein content of the larval haemolymph and fat body of Corcyra cephalonica (Stainton) (Lepidoptera: Pyralidae). J. Adv. Zool. 5, 90101.Google Scholar
Brooks, M. A. and Kringen, W. B. (1972) Polypeptide and protein as growth factors for aposymbiotic Blatella germanica (L.). In Insect and Mite Nutrition, pp. 353364. North Holland, Amsterdam.Google Scholar
Campbell, A., Singh, N. B. and Singh, R. N. (1976) Bioenergetic of the granary weevil Sitophilus granarias L. (Lepidoptera: Curculionidae). Can. J. Zool. 54, 786798.CrossRefGoogle Scholar
Chinmoy, Chatterjee and Subrata, Roy (1986) Quantitative variations of lipids in different organs of Aphitobias piecus Oliver (Insecta, Coleoptera, Tenebrionidae) during post embryonic development. Ind. J. Physiol. Allied Sci. 40, 159166.Google Scholar
Chatterjee, C. (1988) Quantitative changes of some biochemical parameters during post embryonic development of a stored grain pest Alphitobius piecus Oliver (Tenebrionidae: Coleoptera: Insecta) Ph.D. Thesis, Burdwan University, Burdwan.Google Scholar
Chen, P. S. (1971) Biochemical aspects of insect development. In Monograph in Developmental Biology. Vol. 3 ed. NY Tarrytown (Basess: Karger 5) p. 230.Google Scholar
Chen, P. S. (1966) Amino acid and protein metabolism in insect development. Adv. Insect Physiol. 3, 53152.CrossRefGoogle Scholar
Crompton, M. and Birt, L. M. (1967) Changes in the amount of carbohydrate, phosphagen and related compounds during the metamorphosis of the blowfly, Lucilia cuprina. J. Insect Physiol. 13, 15751579.CrossRefGoogle Scholar
Dezwann, A. and Zandee, D. I. (1972) The utilization of glycogen and accumulation of some intermediates during anaerobasis in Mytilus edkilis. Conf. Physiol. Biochem. B 43, 4754.Google Scholar
Domraese, K. A. and Gilbert, L. I. (1964) The rate of lipid in adult development and flight muscle metabolism in Hyalophora cecropia. J. Exp. Biol. 41, 573590.CrossRefGoogle Scholar
Fast, P. G. (1964) Insect lipids: A Review. Mem. Ent. Soc. Can. 37, 150.Google Scholar
Fristom, J. W. (1972) The biochemistry of imaginal disc development. In The Biology of Imaginai Discs. Springer Verlag, Berlin, Heidelberg and New York, 109154.CrossRefGoogle Scholar
Goldsworthy, G. J. (1969) Hyperglycaemic factors from the corpus cardiacum of Locusta migratoria. J. Insect Physiol. 15, 21312140.CrossRefGoogle Scholar
Henry, S. M. and Block, R. J. (1962) Amino acid synthesis, a ruminant like effect on the intracellular symbionts of the german coackroach. Fed. Proc. 21, 9.Google Scholar
Hill, L. and Goldsworthy, G. T. (1968) Growth, feeding activity and the utilization of reserves in larvae of Locusta. J. Insect Physiol. 14, 10851095.CrossRefGoogle Scholar
Holwerda, D. A., Ver Doorn, J. and Beenekkers, A. N. Th. (1977) Characterization of adipokinetic and hyperglycemie substances from the locust corpous cardiacum. Insect Biochem. 7, 151157.CrossRefGoogle Scholar
Hudson, A. (1958) In Insect Biochemistry and Function (Edited by Candy, D. J. and Kilby, B. A.), pp. 91176. Chapman and Hall, London.Google Scholar
Islam, A. and Roy, S. (1981) Quantitative changes of carbohydrate, lipid and protein during the post embryonic development and metamorphosis of Tribolium custaneum and T. confusum (Coleoptera: Tenebrionidae: Insecta). Proc. Indian natn. Sci. Acad. B 47, 313320.Google Scholar
Islam, A. and Roy, S. (1983) Variation of protein and nucleic acids during larvae development of Chironomous barbatitarsis in normal and aposymbiotic conditions. Curr. Sci. 52, 174176.Google Scholar
Janda, V. Jr (1980) Distribution and utilization of proteins in the tissues of Galleria mellonella during pupal adult transformation. Acta. ent. bohemoslov 77, 289296.Google Scholar
Janda, V. Jr and Krieg, P. (1969) Proteolytische Aktivitat des Mitteldarms von Galleria mellonella im Zuammenbang mit Wachstum und Metamorphose. Z. Vergi. Physiol. 64, 288300.CrossRefGoogle Scholar
Kabeer Ahamad, S. I., Begum, S. S. Md and Ramana Rao, K. V. (1978) Effect of malathion on free amino acids, total protein, glycogen and some enzymes of pelecypod Lamellidens marginalis (Lampek). Proc. Indian Acad. Sci. 87, 377381.CrossRefGoogle Scholar
Lee, Kyung Ro and Shin, Byung Sik (1988) Studies on the haemolymph protein in the larval and pupal stage of the chestnut weevil Curculio dentipes (Roelofs). Korean J. Entomol. 18, 101107.Google Scholar
L'Helias, C. (1970) Chemical aspects of growth and development in insects. In Chemical Zoology Vol. 5, (Edited by Florkin, M. and Scheer, B. T.), pp. 343400. Academic Press, New York and London.CrossRefGoogle Scholar
Lafont, R., Mauchamp, B., Pennetier, J. L., Tarroux, P. and Blias, C. (1976) Biochemical correlations during metamorphosis in Pieris brassicae. Insecta Biochem. 3, 97103.CrossRefGoogle Scholar
Lowry, O. H., Rosenbrough, N. J., Farr, A. L. and Randall, R. J. (1951) Protein measurement with folin phenol reagent. J. Biol. Chem. 193, 265275.CrossRefGoogle ScholarPubMed
Petra, Lohr and Gade, G. (1983) Carbohydrate metabolism in the stick insect, Carausius morosus. J. Insect Physiol. 29, 287293.Google Scholar
Radha, Pant and Kumar, Suman (1979) Metabolic fate of carbohydrates and lipids during moulting of Philosamia ricini (Lepidoptera: Saturnidae). Insect Biochem. 9, 577582.Google Scholar
Pant, R. and Kumar, S. (1981) Gluconeogenesis in Dipteran flesh fly, Sarcophaga ruficornis. Indian J. Biochem. Biophys. 18, 4046.Google Scholar
Prasad, C. S. and Nath, G. (1985) Qualitative and quantitative changes in haemolymph proteins of Spodoptera litura Fab. during larval and prepupal development. Indian J. Entomol. 47, 7177.Google Scholar
Rao, K. R. S. S., Rao, K. S. P and Rao, K. V. R (1984) Impact of technical and commercial grade phenothoate on some selected parameters of oxidative metabolism in the fish Channa punctatus (Bioch.). Indian J. Ecol. 11, 611.Google Scholar
Rath, S. and Mishra, B. N. (1980) Changes in nucleic acids and protein content of Tilapia mossambica exposed to dichlorovos (DDVP). Indian J. Fish. 27, 7681.Google Scholar
Roe, J. H. (1955) The determination of sugar in blood and spinal fluid with anthrone reagent. J. Biol. Chem. 212, 335343.CrossRefGoogle ScholarPubMed
Tate, L. G. and Wimer, L. T. (1974) Incorporation of 14C from glucose into CO2 chitin, lipid, protein and soluble carbohydrate during metamorphosis of the blow fly Phormia regina. Insect Biochem. 4, 8598.CrossRefGoogle Scholar
Taschenberger, D. (1967) Quantitative fertimung des organischen ges morphosphogen altes in der miltedrm drude und an integument von Oniscus asellus und Procellio scaber Latr. (Crustacea, Oniscoidae) in natung over land. Z. Vergi. Physiol. 54, 400414.CrossRefGoogle Scholar
Wyatt, G. R. (1961) The biochemistry of insect haemolymph. Annu. Rev. Entomol. 6, 75102.CrossRefGoogle Scholar