Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T20:52:35.370Z Has data issue: false hasContentIssue false

Decreased glutamine and glutamate: an early biomarker of neurodegeneration

Published online by Cambridge University Press:  05 February 2021

Burcu Zeydan
Affiliation:
Department of Radiology, Division of Neuroradiology, Rochester, MN, USA Department of Neurology, Mayo Clinic, Rochester, MN, USA
Kejal Kantarci*
Affiliation:
Department of Radiology, Division of Neuroradiology, Rochester, MN, USA
Get access

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Commentary
Copyright
© International Psychogeriatric Association 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antuono, P. G., Jones, J. L., Wang, Y. and Li, S. J. (2001). Decreased glutamate + glutamine in Alzheimer’s disease detected in vivo with (1)H-MRS at 0.5 T. Neurology, 56, 737742.CrossRefGoogle ScholarPubMed
Hattori, N., Abe, K., Sakoda, S. and Sawada, T. (2002). Proton MR spectroscopic study at 3 Tesla on glutamate/glutamine in Alzheimer’s disease. Neuroreport, 13, 183186.CrossRefGoogle ScholarPubMed
Kantarci, K. et al. (2008). Alzheimer disease: postmortem neuropathologic correlates of antemortem 1H MR spectroscopy metabolite measurements. Radiology, 248, 210220.CrossRefGoogle ScholarPubMed
Kantarci, K. et al. (2011). Diffusion tensor imaging and cognitive function in older adults with no dementia. Neurology, 77, 2634.CrossRefGoogle ScholarPubMed
Kantarci, K. et al. (2017). White-matter integrity on DTI and the pathologic staging of Alzheimer’s disease. Neurobiology of Aging, 56, 172179.CrossRefGoogle ScholarPubMed
Motegi, T. et al. (2019). Glutamine + glutamate level predicts the magnitude of microstructural organization in the gray matter in the healthy elderly. International Psychogeriatrics, 33, 2129.Google Scholar
Murray, M. E. et al. (2014). Early Alzheimer’s disease neuropathology detected by proton MR spectroscopy. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 34, 1624716255.CrossRefGoogle ScholarPubMed
Nedergaard, M., Takano, T. and Hansen, A. J. (2002). Beyond the role of glutamate as a neurotransmitter. Nature Reviews Neuroscience, 3, 748755.CrossRefGoogle ScholarPubMed
Oz, G. and Tkac, I. (2011). Short-echo, single-shot, full-intensity proton magnetic resonance spectroscopy for neurochemical profiling at 4 T: validation in the cerebellum and brainstem. Magnetic Resonance in Medicine, 65, 901910.CrossRefGoogle Scholar
Riese, F. et al. (2015). Posterior cingulate gamma-aminobutyric acid and glutamate/glutamine are reduced in amnestic mild cognitive impairment and are unrelated to amyloid deposition and apolipoprotein E genotype. Neurobiology of Aging, 36, 5359.CrossRefGoogle ScholarPubMed
Ross, B. D., Bluml, S., Cowan, R., Danielsen, E., Farrow, N. and Tan, J. (1998). In vivo MR spectroscopy of human dementia. Neuroimaging Clinics of North America, 8, 809822.Google ScholarPubMed
Walecki, J., Barcikowska, M., Cwikla, J. B. and Gabryelewicz, T. (2011). N-acetylaspartate, choline, myoinositol, glutamine and glutamate (glx) concentration changes in proton MR spectroscopy (1H MRS) in patients with mild cognitive impairment (MCI). Medical Science Monitor, 17, MT105111.CrossRefGoogle Scholar
Zeydan, B. et al. (2017). Decreased glutamate levels in patients with amnestic mild cognitive impairment: an sLASER proton MR spectroscopy and PiB-PET study. Journal of Neuroimaging: Official Journal of the American Society of Neuroimaging, 27, 630636.CrossRefGoogle ScholarPubMed