Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T12:03:43.628Z Has data issue: false hasContentIssue false

Empirical Evidence of Long-Distance Dispersal in Miscanthus sinensis and Miscanthus × giganteus

Published online by Cambridge University Press:  20 January 2017

Lauren D. Quinn*
Affiliation:
Energy Biosciences Institute, University of Illinois, 1206 W. Gregory Dr., Urbana, IL 61801
David P. Matlaga
Affiliation:
Global Change and Photosynthesis Research Unit, USDA Agricultural Research Service, N-319 Turner Hall, 1102 S. Goodwin Ave., Urbana IL, 61801
J. Ryan Stewart
Affiliation:
Department of Crop Sciences, University of Illinois, 1201 S. Dorner Dr., Urbana, IL 61801
Adam S. Davis
Affiliation:
Global Change and Photosynthesis Research Unit, USDA Agricultural Research Service, N-319 Turner Hall, 1102 S. Goodwin Ave., Urbana IL, 61801
*
Corresponding author's E-mail: ldquinn@illinois.edu

Abstract

Many perennial bioenergy grasses have the potential to escape cultivation and invade natural areas. We quantify dispersal, a key component in invasion, for two bioenergy candidates:Miscanthus sinensis and M. × giganteus. For each species, approximately 1 × 106 caryopses dispersed anemochorously from a point source into traps placed in annuli near the source (0.5 to 5 m; 1.6 to 16.4 ft) and in arcs (10 to 400 m) in the prevailing wind direction. For both species, most caryopses (95% for M. sinensis and 77% for M. × giganteus) were captured within 50 m of the source, but a small percentage (0.2 to 3%) were captured at 300 m and 400 m. Using a maximum-likelihood approach, we evaluated the degree of support in our empirical dispersal data for competing functions to describe seed-dispersal kernels. Fat-tailed functions (lognormal, Weibull, and gamma (Γ)) fit dispersal patterns best for both species overall, but because M. sinensis dispersal distances were significantly affected by wind speed, curves were also fit separately for dispersal distances in low, moderate, and high wind events. Wind speeds shifted the M. sinensis dispersal curve from a thin-tailed exponential function at low speeds to fat-tailed lognormal functions at moderate and high wind speeds. M. sinensis caryopses traveled farther in higher wind speeds (low, 30 m; moderate, 150 m; high, 400 m). Our results demonstrate the ability of Miscanthus caryopses to travel long distances and raise important implications for potential escape and invasion of fertile Miscanthus varieties from bioenergy cultivation.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Barney, J. N. and DiTomaso, J. M. 2008. Nonnative species and bioenergy: are we cultivating the next invader? Bioscience 58:6470.Google Scholar
Buddenhagen, C. E., Chimera, C., and Clifford, P. 2009. Assessing biofuel crop invasiveness: a case study. PLoS One 4:e5261. (doi:10.1371/journal.pone.0005261).CrossRefGoogle ScholarPubMed
Bullock, J. M. and Clarke, R. T. 2000. Long distance seed dispersal by wind: measuring and modelling the tail of the curve. Oecologia 124:506521.Google Scholar
Bullock, J. M., Shea, K., and Skarpaas, O. 2006. Measuring plant dispersal: an introduction to field methods and experimental design. Plant Ecol 186:217234.Google Scholar
Cain, M. L., Milligan, B. G., and Strand, A. E. 2000. Long-distance seed dispersal in plant populations. Am. J. Botany 87:12171227.Google Scholar
Christian, D. G., Yates, N. E., and Riche, A. B. 2005. Establishing Miscanthus sinensis from seed using conventional sowing methods. Ind. Crops Prod 21:109111.Google Scholar
Clark, J. S., Lewis, M., McLachlan, J. S., and HilleRisLambers, J. 2003. Estimating population spread: what can we forecast and how well? Ecology 84:19791988.CrossRefGoogle Scholar
Clifton-Brown, J. C., Lewandowski, I., Andersson, B., Basch, G., Christian, D. G., Kjeldsen, J. B., Jorgensen, U., Mortensen, J. V., Riche, A. B., Schwarz, K. U., Tayebi, K., and Teixeira, F. 2001. Performance of 15 Miscanthus genotypes at five sites in Europe. Agron. J 93:10131019.Google Scholar
Cousens, R., Dytham, C., and Law, R. 2008. Dispersal in Plants: A Population Perspective. New York, NY Oxford University.CrossRefGoogle Scholar
Dauer, J. T., Mortensen, D. A., and Vangessel, M. J. 2007. Temporal and spatial dynamics of long-distance Conyza canadensis seed dispersal. J. Appl. Ecol 44:105114.Google Scholar
Davis, A. S., Cousens, R. D., Hill, J., Mack, R. N., Simberloff, D., and Raghu, S. 2010. Screening bioenergy feedstock crops to mitigate invasion risk. Front. Ecol. Environ. doi:10.1890/090030.Google Scholar
Deuter, M. and Abraham, J. 1998. Genetic resources of Miscanthus and their use in breeding. Pages 775777. In Kopetz, H., Weber, T., Palz, W., Chartier, P., and Ferrero, G. L. eds. Proceedings of the 10th European Bioenergy Conference, Rimpar, Germany. London, UK Renewable Energy Association.Google Scholar
Doebley, J. 2006. Plant science—unfallen grains: how ancient farmers turned weeds into crops. Science 312:13181319.Google Scholar
Gasso, N., Sol, D., Pino, J., Dana, E. D., Lloret, F., Sanz-Elorza, M., Sobrino, E., and Vila, M. 2009. Exploring species attributes and site characteristics to assess plant invasions in Spain. Divers. Distrib 15:5058.CrossRefGoogle Scholar
Greene, D. F., Canham, C. D., Coates, K. D., and Lepage, P. T. 2004. An evaluation of alternative dispersal functions for trees. J. Ecol 92:758766.Google Scholar
Greene, D. F. and Johnson, E. A. 1989. A model of wind dispersal of winged or plumed seeds. Ecology 70:339347.Google Scholar
Heaton, E. A., Dohleman, F. G., and Long, S. P. 2008. Meeting US biofuel goals with less land: the potential of Miscanthus . Glob. Change Biol 14:20002014.Google Scholar
Jongejans, E. and Telenius, A. 2001. Field experiments on seed dispersal by wind in ten umbelliferous species (Apiaceae). Plant Ecol 152:6778.CrossRefGoogle Scholar
Kollmann, J. and Goetze, D. 1998. Notes on seed traps in terrestrial plant communities. Flora 193:3140.Google Scholar
Kot, M., Lewis, M. A., and van den Driessche, P. 1996. Dispersal data and the spread of invading organisms. Ecology 77:20272042.Google Scholar
Lewandowski, I., Scurlock, J. M. O., Lindvall, E., and Christou, M. 2003. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335361.Google Scholar
Linde-Laursen, I. B. 1993. Cytogenetic analysis of Miscanthus ‘Giganteus’, an interspecific hybrid. Hereditas (Lund) 119:297300.Google Scholar
Lloret, F., Medail, F., Brundu, G., Camarda, I., Moragues, E., Rita, J., Lambdon, P., and Hulme, P. E. 2005. Species attributes and invasion success by alien plants on Mediterranean islands. J. Ecol 93:512520.Google Scholar
Lowry, W. P. and Lowry, P. P. II. 1989. Fundamentals of Biometeorology: Interactions of Organisms and the Atmosphere, Volume 1—The Physical Environment. McMinnville, OR Peavine.Google Scholar
Martinez, I. and Gonzalez-Taboada, F. 2009. Seed dispersal patterns in a temperate forest during a mast event: performance of alternative dispersal kernels. Oecologia 159:389400.Google Scholar
Marushia, R. G. and Holt, J. S. 2006. The effects of habitat on dispersal patterns of an invasive thistle, Cynara cardunculus . Biol. Invasions 8:577593.CrossRefGoogle Scholar
Meyer, M., Paul, J., and Anderson, N. 2010. Competitive ability of invasive Miscanthus biotypes with aggressive switchgrass. Biol. Invasions.CrossRefGoogle Scholar
Meyer, M. H. and Tchida, C. L. 1999. Miscanthus Anderss. Produces viable seed in four USDA hardiness zones. J. Environ. Hortic 17:137140.Google Scholar
Nathan, R., Perry, G., Cronin, J. T., Strand, A. E., and Cain, M. L. 2003. Methods for estimating long-distance dispersal. Oikos 103:261273.CrossRefGoogle Scholar
Neubert, M. G. and Parker, I. M. 2004. Projecting rates of spread for invasive species. Risk Anal 24:817831.Google Scholar
Nishiwaki, A. and Sugawara, K. 1993. Density effects on reproduction in Miscanthus sinensis (Gramineae). Proceedings of the XV International Botanical Congress, Yokohama, Japan. Cedex, France International Association of Botanical and Mycological Societies, International Union of Biological Sciences. 283.Google Scholar
Ohtsuka, T., Sakura, T., and Ohsawa, M. 1993. Early herbaceous succession along a topographical gradient on forest clear-felling sites in mountainous terrain, central Japan. Ecol. Res 8:329340.Google Scholar
Page, M. J., Newlands, L., and Eales, J. 2002. Effectiveness of three seed-trap designs. Aust. J. Bot 50:587594.Google Scholar
Quinn, L. D., Allen, D. J., and Stewart, J. R. 2010. Invasiveness potential of Miscanthus sinensis: implications for bioenergy production in the United States [published online ahead of print November 3, 2010]. Glob. Change Biol. Bioenergy 2:310320. DOI: 10.1111/j.1757–1707.2010.01062.x.Google Scholar
R Development Core Team 2008. R: A language and environment for statistical computing, version 2.6.0. Vienna, Austria R Foundation for Statistical Computing.Google Scholar
Raghu, S., Anderson, R. C., Daehler, C. C., Davis, A. S., Wiedenmann, R. N., Simberloff, D., and Mack, R. N. 2006. Adding biofuels to the invasive species fire? Science 313:17421742.Google Scholar
Ramsey, J. and Schemske, D. W. 1998. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Ann. Rev. Ecol. Syst 29:467501.Google Scholar
Saura-Mas, S. and Lloret, F. 2005. Wind effects on dispersal patterns of the invasive alien Cortaderia selloana in Mediterranean wetlands. Acta Oecol. Int. J. Ecol 27:129133.Google Scholar
Schippers, P. and Jongejans, E. 2005. Release thresholds strongly determine the range of seed dispersal by wind. Ecol. Model 185:93103.Google Scholar
Skarpaas, O. and Shea, K. 2007. Dispersal patterns, dispersal mechanisms, and invasion wave speeds for invasive thistles. Am. Nat 170:421430.Google Scholar
Skarpaas, O., Shea, K., and Bullock, J. M. 2005. Optimizing dispersal study design by Monte Carlo simulation. J. Appl. Ecol 42:731739.CrossRefGoogle Scholar
Skarpaas, O., Stabbetorp, O. E., Ronning, I., and Svennungsen, T. O. 2004. How far can a hawk's beard fly? Measuring and modelling the dispersal of Crepis praemorsa. J. Ecol 92:747757.CrossRefGoogle Scholar
Stewart, J. R., Toma, Y., Fernandez, F. G., Nishiwaki, A., Yamada, T., and Bollero, G. 2009. The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development, in its native range in Japan: a review. Glob. Change Biol. Bioenergy 1:126153.CrossRefGoogle Scholar
Stoyan, D. and Wagner, S. 2001. Estimating the fruit dispersion of anemochorous forest trees. Ecol. Model 145:3547.Google Scholar
Wiese, A., Zasada, J., and Strong, T. 1998. In pursuit of a better seed trap. Newtown Square, PA North Central Forest Experiment Station, USDA Forest Service Research Note.CrossRefGoogle Scholar
Yu, C. Y., Kim, H. S., Rayburn, A. L., Widholm, J. M., and Juvik, J. A. 2009. Chromosome doubling of the bioenergy crop, Miscanthus × giganteus . Glob. Change Biol. Bioenergy 1:404412.CrossRefGoogle Scholar
Zub, H. W. and Brancourt-Hulmel, M. 2010. Agronomic and physiological performances of different species of Miscanthus, a major energy crop: a review [published online ahead of print April 16, 2010]. Agron. Sustain. Dev 30:201214. doi:10.1051/agro/2009034.Google Scholar