Article contents
Leafy Spurge (Euphorbia esula) Control with Aphthona spp. Affects Seedbank Composition and Native Grass Reestablishment
Published online by Cambridge University Press: 20 January 2017
Abstract
Aphthona spp. flea beetles have established and reduced the density of leafy spurge in much of the western United States. One way to measure the long-term impact and effectiveness of a weed control program is by monitoring the changes in the seedbank over time. The change in leafy spurge stem density and seed in the seedbank were evaluated 5 yr after Aphthona spp. were released to control this weed in the Little Missouri National Grasslands in southwestern North Dakota. Leafy spurge density and seed in both loamy overflow and loamy ecological sites decreased, whereas desirable (high-seral) forbs increased 5 yr after the biological control agents were released. Leafy spurge topgrowth was reduced from an average of over 200 stems/m2 to less than 8 stems/m2 in the most densely infested sites, and leafy spurge seed was reduced from an average of 68% of the seedbank to only 14% in both ecological sites. High-seral forb seed increased by over 300% in the seedbank, which indicated the floristic quality of the sites, was returning to a preinfestation state. Species with the largest increase included western rock jasmine and fringed sage, which increased at least three-fold in both sites. Less desirable low-seral forbs and grasses accounted for about 30% of the seedbank. In a greenhouse study, native grass production was reduced nearly 50% when grown in soil from Aphthona spp. release sites compared to nonrelease sites. Switchgrass production was reduced to a greater extent (66%) than green needlegrass, little bluestem, or western wheatgrass. The cause and extent of reduced native grass production in sites where Aphthona spp. were released has yet to be determined. The decrease in leafy spurge topgrowth and seed in the soil seedbank as desirable species seed increased, should lead to the long-term recovery of the plant community.
Keywords
- Type
- Research Articles
- Information
- Copyright
- Copyright © Weed Science Society of America
References
Literature Cited
- 8
- Cited by