Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T19:48:16.333Z Has data issue: false hasContentIssue false

Measuring the Effects of Invasive Plants on Ecosystem Services: Challenges and Prospects

Published online by Cambridge University Press:  20 January 2017

Valerie T. Eviner*
Affiliation:
Department of Plant Sciences, 1210 PES, Mail Stop 1, University of California, One Shields Ave, Davis, CA 95616
Kelly Garbach
Affiliation:
Graduate Group in Ecology, University of California, Davis, CA 95616
Jill H. Baty
Affiliation:
Graduate Group in Ecology, University of California, Davis, CA 95616
Sarah A. Hoskinson
Affiliation:
Graduate Group in Ecology, University of California, Davis, CA 95616
*
Corresponding author's E-mail: veviner@ucdavis.edu

Abstract

Plant invasions can have large effects on ecosystem services. Some plant invaders were introduced specifically to restore key services to ecosystems, and other invaders are having unintended, detrimental effects on services, such as the quantity and quality of water delivered, flood control, erosion control, and food production. Many ecosystem services are difficult to measure directly, and although there are extensive studies on plant invaders and ecosystem processes, a number of challenges prevent us from confidently extrapolating those processes as proxies for services. To extrapolate local, short-term measures of processes to ecosystem services, we must: (1) determine which processes are the key contributors to a service, (2) assess how multiple processes interact to provide a given service, (3) determine how vegetation types and species affect those processes, and (4) explicitly assess how ecosystem services and their controls vary over space and time, including reliance of ecosystem services on “hot spots” and “hot moments” and a minimum size of a vegetation type in the landscape. A given invader can have positive effects on some services and negative effects on others. It is important to consider that, in some systems, shifting environmental conditions may no longer support native species and that invasive species may be critical contributors to the resilience of ecosystem services.

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bennet, E. M., Peterson, G. D., and Gordon, L. J. 2009. Understanding relationships among multiple ecosystem services. Ecol. Lett. 12:13941404.Google Scholar
Bjerknes, A. L., Totland, O., Hegland, S. J., and Nielsen, A. 2007. Do alien plant invasions really affect pollination success in native plant species? Biol. Conserv. 138:112.Google Scholar
Brauman, K. A., Daily, G. C., Duarte, T. K., and Mooney, H. A. 2007. The nature and value of ecosystem services: an overview highlighting hydrologic services. Annu. Rev. Environ. Resour. 32:6798.Google Scholar
Briske, D. D., ed. 2011. Conservation Benefits of Rangeland Practices: Assessment, Recommendations, and Knowledge Gaps. Washington, DC U.S. Department of Agriculture, Natural Resources Conservation Service.Google Scholar
Brown, B. J., Mitchell, R. J., and Graham, S. A. 2002. Competition for pollination between an invasive species (purpose loosestrife) and a native congener. Ecology 83:23282336.Google Scholar
Carpenter, S., Walker, B., Anderies, M., and Abel, N. 2001. From metaphor to measurement: resilience of what to what? Ecosystems 4:765781.Google Scholar
Carpenter, S. R., DeFries, R., Dietz, T., Mooney, H. A., Polasky, S., Reid, W. V., and Scholes, R. J. 2006. Millennium ecosystem assessment: research needs. Science 314:257258.Google Scholar
Chan, K. M. A., Shaw, M. R., Cameron, D. R., Underwood, E. C., and Daily, G. C. 2006. Conservation planning for ecosystem services. PLoS Biol. 4:21382152.Google Scholar
Chapin, F. S. III. 1980. The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst. 11:233260.Google Scholar
Chapin, F. S. III, Walker, B., Hobbs, R., Hooper, D., Lawton, J., Sala, O., and Tilman, D. 1997. Biotic control over the functioning of ecosystems. Science 277:500504.Google Scholar
Charles, H. and Dukes, J. 2007. Impacts of invasive species on ecosystem services. Pages 217237. In Nentwig, W., ed. Biological Invasions. Berlin Springer-Verlag.Google Scholar
Corbin, J. and D'Antonio, C. M. 2004. Effects of invasive species on soil nitrogen cycling: implications for restoration. Weed Technol. 18:14641467.Google Scholar
D'Antonio, C. M. and Vitousek, P. M. 1992. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu. Rev. Ecol. Syst. 23:6387.Google Scholar
Devitt, D. A., Sala, A., Smith, S. D., Cleverly, J., Shaulis, L. K., and Hammett, R. 1998. Bowen Ratio estimates of evapotranspiration for Tamarix ramosissima stands on the Virgin River in southern Nevada. Water Resour. Res. 34:24072414.Google Scholar
Diaz, S., Lavorel, S., Chapin, F. S. III, Tecco, P. A., Gurvich, D. E., and Grigulis, K. 2007. Functional diversity- at the crossroads between ecosystem functioning and environmental filters. Pages 8192. In Canadell, J. G., Pataki, D., and Pitelka, L., eds. Terrestrial Ecosystems in a Changing World. IGBP series. Berlin Springer-Verlag.Google Scholar
Dugas, W. A., Hicks, R. A., and Wright, P. 1998. Effect of removal of Juniperus ashei on evapotranspiration and runoff in the Seco Creek watershed. Water Resour. Res. 34:14991506.Google Scholar
Egoh, B., Reyers, B., Rouget, M., Bode, M., and Richardson, D. M. 2009. Spatial congruence between biodiversity and ecosystem services in South Africa. Biol. Conserv. 142:553562.Google Scholar
Ehrenfeld, J. 2003. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503523.Google Scholar
Elgersma, K. J. and Ehrenfeld, J. G. 2011. Linear and non-linear impacts of a non-native plant invasion on soil microbial community structure and function. Biol. Invasions 13:757768.Google Scholar
Eviner, V. T. and Chapin, F. S. III. 2003. Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annu. Rev. Ecol. Syst. 34:455485.Google Scholar
Eviner, V. T. and Hawkes, C. V. 2008. Embracing variability in the application of plant-soil interactions to the restoration of communities and ecosystems. Restor. Ecol. 16:713729.Google Scholar
Eviner, V. T., Hoskinson, S. A., and Hawkes, C. V. 2010. Ecosystem impacts of exotic plants can feed back to increase invasion in western U.S. rangelands. Rangelands 31:2131.Google Scholar
Ewel, J. J. and Putz, F. E. 2004. A place for alien species in ecosystem restoration. Front. Ecol. Environ. 2:354360.Google Scholar
Feld, C. K., da Silva, P. M., Sousa, J. P., et al. 2009. Indicators of biodiversity and ecosystem services: a synthesis across ecosystems and spatial scales. Oikos 118:18621871.Google Scholar
Forseth, I. N. and Innis, A. F. 2004. Kudzu (Pueraria montana): history, physiology, and ecology combine to make a major ecosystem threat. Crit. Rev. Plant Sci. 23:401413.Google Scholar
Fuhlendorf, S. D., Engle, D. M., O'Meilia, C. M., Weir, J. R., and Cummings, D. C. 2009. Does herbicide weed control increase livestock production on non-equilibrium rangeland? Agric. Ecosyst. Environ. 132:16.Google Scholar
Gordon, D. R. 1998. Effects of invasive, non-indigenous plant species on ecosystem processes: lessons from Florida. Ecol. Appl. 8:975989.Google Scholar
Grime, J. P. 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86:902910.Google Scholar
Grout, J., Levings, C., and Richardson, J. 1997. Decomposition rates of purple loosestrife (Lythrum salicaria) and Lyngbyei's sedge (Carex lyngbyei) in the Fraser River Estuary. Estuaries 20:96102.Google Scholar
Hartemink, A. E. 1999. Piper aduncum fallows in the lowlands of Papua New Guinea. Pages 193196. In Cairns, M., ed. Indigenous strategies for intensification of shifting cultivation in Southeast Asia. Bogor, Indonesia ICRAF: World Agroforestry Centre.Google Scholar
Hickman, J. E., Wu, S. L., Mickley, L. J., and Lerdau, M. T. 2010. Kudzu (Pueraria montana) invasion doubles emissions of nitric oxide and increases ozone pollution. Proc. Natl. Acad. Sci. U. S. A. 107:1011510119.Google Scholar
Hobbs, R. J., Higgs, E., and Harris, J. A. 2009. Novel ecosystems: implications for conservation and restoration. Trends Ecol. Evol. 24:599605.Google Scholar
Huang, Y., Wilcox, B. P., Stern, L., and Perotto-Baldivieso, H. 2006. Springs on rangelands: influence of woody plant cover and runoff dynamics. Hydrological Processes. 20:32773288.Google Scholar
Hull, A. C. Jr, and Pechanee, J. F. 1949. Growth periods and herbage production of cheatgrass and reseeded grasses in southwestern Idaho. J. Range Manag. 2:183186.Google Scholar
Huxman, T. E., Wilcox, B. P., Breshears, D. D., Scott, R. L., Snyder, K. A., Small, E. E., Hultine, K., Pockman, W. T., and Jackson, R. B. 2005. Ecohydrological implications of woody plant encroachment. Ecology 86:308319.Google Scholar
Jack, B. K., Kousky, C., and Sims, K. R. E. 2008. Designing payment for ecosystem services: lessons from previous experience with incentive-based mechanisms. Proc. Natl. Acad. Sci. U. S. A. 105:94659470.Google Scholar
Jackson, R. B., Banner, J. L., Jobbagy, E. G., Pockman, W. T., and Wall, D. H. 2002. Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418:623626.Google Scholar
Kremen, C. 2005. Managing ecosystem services: what do we need to know about their ecology? Ecol. Lett. 8:468479.Google Scholar
Kroeger, T., Casey, F., Alvarez, P., Cheatum, M., and Tavassoli, L. 2009. An Economic Analysis of the Benefits of Habitat Conservation on California Rangelands: Conservation Economics White Paper—Conservation Economics Program. Washington, DC Defenders of Wildlife. 91 p. http://www.defenders.org/programs_and_policy/science_and_economics/conservation_economics/valuation/index.php.Google Scholar
Lacey, J., Marlow, C., and Lane, J. 1989. Influence of spotted knapweed (Centaurea maculosa) on surface runoff and sediment yield. Weed Technol. 3:627631.Google Scholar
Lal, R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304:16231627.Google Scholar
Le Maitre, D. C., van Wilgen, C., Chapman, R. A., and McKelly, D. H. 1996. Invasive plants and water resources in the Western Cape Province, South Africa: modeling the consequences of a lack of management. J. Appl. Ecol. 33:161172.Google Scholar
Lewis, D. J., Singer, M. J., Dahlgren, R. A., and Tate, K. W. 2006. Nitrate and sediment fluxes from a California rangeland watershed. J. Environ. Qual. 35:22022211.Google Scholar
Liao, C., Peng, R., Luo, Y., Zhou, X., Wu, X., Fang, C., Chen, J., and Li, B. 2007. Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol. 177:706714.Google Scholar
Luck, G. W., Harrington, R., Harrison, P. A., et al. 2009. Quantifying the contribution of organisms to the provision of ecosystem services. Bioscience 59:223235.Google Scholar
Mack, R. N., Simberloff, D., Lonsdale, W. M., Evans, H., Clout, M., and Bazzaz, F. A. 2000. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 3:689710.Google Scholar
Marchante, E., Kjoller, A., Struwe, S., and Freitas, H. 2008. Short- and long-term impacts of Acacia longifolia invasion on the belowground processes of a Mediterranean coastal dune ecosystem. Appl. Soil Ecol. 40:210217.Google Scholar
Mark, A. F. and Dickinson, K. J. M. 2008. Maximizing water yields with indigenous non-forest vegetation: a New Zealand perspective. Front Ecol. Environ. 6:2534.Google Scholar
Marsh, A. S., Arnone, J. A., Bormann, B. T., and Gordon, G. C. 2000. The role of Equisetum in nutrient cycling in an Alaskan shrub wetland. J. Ecol. 88:9991011.Google Scholar
McClain, M. E., Boyer, E. W., Dent, C. L., et al. 2003. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301312.Google Scholar
Millennium Ecosystem Assessment. 2005. Ecosystems and human well-being: synthesis. Washington, DC Island Press. 137 p.Google Scholar
Mitsch, W., Day, J. Jr., Gilliam, J., Groffman, P., Hey, D., Randall, G., and Wang, N. 2001. Reducing nitrogen loading to the Gulf of Mexico from the Mississippi River Basin: Strategies to counter a persistent ecological problem. Bioscience 51:373388.Google Scholar
Mueller-Dombois, D. 1973. A non-adapted vegetation interferes with water removal in a tropical rain forest area in Hawaii. J. Trop. Ecol. 14:118.Google Scholar
Naidoo, R., Balmford, A., Costanza, R., Fisher, B., Green, R. E., Lehner, B., Malcolm, T. R., and Ricketts, T. H. 2008. Global mapping of ecosystem services and conservation priorities. Proc. Natl. Acad. Sci. U. S. A. 105:94959500.Google Scholar
National Research Council. 2004. Executive summary. Pages 116. in Valuing Ecosystem Services: Toward Better Environmental Decision-Making. Washington, DC National Academies Press.Google Scholar
Owens, M. K. and Moore, G. W. 2007. Saltcedar water use: realistic and unrealistic expectations. Rangeland Ecol. Manag. 60:553557.Google Scholar
Parker, I., Simberloff, D., Lonsdale, W., et al. 1999. Impact: toward a framework for understanding the ecological effects of invaders. Biol. Invasions 1:319.Google Scholar
Pejchar, L. and Mooney, H. 2009. Invasive species, ecosystem services and human well-being. Trends Ecol. Evol. 24:497504.Google Scholar
Peltzer, D. A., Bellingham, P. J., Kurokawa, H., Walker, L. R., Wardle, D. A., and Yeates, G. W. 2009. Punching above their weight: low-biomass non-native plant species alter soil properties during primary succession. Oikos 118:10011014.Google Scholar
Pimentel, D., Lach, L., Zuniga, R., and Morrison, D. 2000. Environmental and economic costs of nonindigenous species in the United States. Bioscience 50:5365.Google Scholar
Richardson, D. M. 1988. Forestry trees as invasive aliens. Conserv. Biol. 12:1826.Google Scholar
Rinella, M. J. and Luschei, E. C. 2007. Hierarchical Bayesian methods estimate invasive weed impacts at pertinent spatial scales. Biol. Invasions 9:545558.Google Scholar
Scott, D., Saggar, S., and McIntosh, P. D. 2001. Biogeochemical impact of Hieracium invasion in New Zealand's grazed tussock grasslands: sustainability implications. Ecol. Appl. 11:13111322.Google Scholar
Sharkey, T. D. and Loreto, F. 1993. Water-stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves. Oecologia 95:328333.Google Scholar
Sieg, C. J., Denslow, J. S., Huebner, C. D., and Miller, J. H. 2010. The role of the Forest Service in nonnative invasive plant research. Pages 3541. in: Dix, M. E. and Britton, K., eds. A Dynamic Invasive Species Research Vision: Opportunities and Priorities 2009–2029. Washington, DC U.S. Department of Agriculture Forest Services GTR WO-79/83.Google Scholar
Strayer, D. L., Eviner, V. T., Jeschke, J. M., and Pace, M. 2006. Understanding the long-term effects of species invasions. Trends Ecol. Evol. 21:645651.Google Scholar
van der Putten, W. H., de Ruiter, P. C., Bezemer, T. M., Harvey, J. A., Wassen, M., and Wolters, V. 2004. Basic Appl. Ecol. 5:487494.Google Scholar
van Wilgen, B. W., Cowling, R. M., and Burgers, C. J. 1996. Valuation of ecosystem services. Bioscience 46:184189.Google Scholar
Verhoeven, J. T. A., Arheimer, B., Yin, C. Q., and Hefting, M. M. 2006. Regional and global concerns over wetlands and water quality. Trends Ecol. Evol. 21:96103.Google Scholar
Vila, M., Basnou, C., Pysek, P., et al. 2010. Front. Ecol. Environ. 8:135144.Google Scholar
Wallace, K. J. 2007. Classification of ecosystem services: problems and solutions. Biol. Conserv. 139:235246.Google Scholar
Wilcox, B. P., Owens, M. K., Dugas, W. A., Ueckert, D. N., and Hart, C. R. 2006. Shrubs, streamflow, and the paradox of scales. Hydrol. Process. 20:32453259.Google Scholar
Zavaleta, E. 2000. The economic value of controlling an invasive shrub. Ambio 29:462467.Google Scholar
Zavaleta, E. S., Hobbs, R. J., and Mooney, H. A. 2001. Viewing invasive species removal in a whole-ecosystem context. Trends Ecol. Evol. 16:454459.Google Scholar
Zhu, Z., ed. 2010. A method for assessing carbon stocks, carbon sequestration, and greenhouse-gas fluxes in ecosystems of the United States under present conditions and future scenarios. Reston, VA U.S. Geological Survey Scientific Investigations Report 2010–5233. 188 p.Google Scholar