Article contents
Potential for Remote Sensing to Detect and Predict Herbicide Injury on Waterhyacinth (Eichhornia crassipes)
Published online by Cambridge University Press: 20 January 2017
Abstract
Many large-scale management programs directed toward the control of waterhyacinth rely on maintenance management with herbicides. Improving the implementation of these programs could be achieved through accurately detecting herbicide injury in order to evaluate efficacy. Mesocosm studies were conducted in the fall and summer of 2006 and 2007 at the R. R. Foil Plant Science Research Center, Mississippi State University, to detect and predict herbicide injury on waterhyacinth treated with four different rates of imazapyr and glyphosate. Herbicide rates corresponded to maximum recommended rates of 0.6 and 3.4 kg ae ha−1 (0.5 and 3 lb ac−1) for imazapyr and glyphosate, respectively, and three rates lower than recommended maximum. Injury was visually estimated using a phytotoxicity rating scale, and reflectance measurements were collected using a handheld hyperspectral sensor. Reflectance measurements were then transformed into a Landsat 5 Thematic Mapper (TM) simulated data set to obtain pixel values for each spectral band. Statistical analyses were performed to determine if a correlation existed between bands 1, 2, 3, 4, 5, and 7 and phytotoxicity ratings. Simulated data from Landsat 5 TM indicated that band 4 was the most useful band to detect and predict herbicide injury of waterhyacinth by glyphosate and imazapyr. The relationship was negative because pixel values of band 4 decreased when herbicide injury increased. At 2 wk after treatment, the relationship between band 4 and phytotoxicity was best (r 2 of 0.75 and 0.90 for glyphosate and imazapyr, respectively), which served to predict herbicide injury in the following weeks.
Keywords
- Type
- Research
- Information
- Copyright
- Copyright © Weed Science Society of America
References
Literature Cited
- 10
- Cited by