Article contents
Russian-olive (Elaeagnus angustifolia) genetic diversity in the western United States and implications for biological control
Published online by Cambridge University Press: 17 April 2019
Abstract
Invasions can be genetically diverse, and that diversity may have implications for invasion management in terms of resistance or tolerance to control methods. We analyzed the population genetics of Russian-olive (Elaeagnus angustifolia L.), an ecologically important and common invasive tree found in many western U.S. riparian areas. We found three cpDNA haplotypes and, using 11 microsatellite loci, identified three genetic clusters in the 460 plants from 46 populations in the western United States. We found high levels of polymorphism in the microsatellites (5 to 15 alleles per locus; 106 alleles total). Our native-range sampling was limited, and we did not find a genetic match for the most common cpDNA invasive haplotype or a strong confirmation of origin for the most common microsatellite genetic cluster. We did not find geographic population structure (isolation by distance) across the U.S. invasion, but we did identify invasive populations that had the most diversity, and we suggest these as choices for initial biological control–release monitoring. Accessions from each genetic cluster, which coarsely represent the range of genetic diversity found in the invasion, are now included in potential classical biological control agent efficacy testing.
- Type
- Research Article
- Information
- Copyright
- © Weed Science Society of America, 2019
Footnotes
Associate Editor: Marie Jasieniuk, University of California, Davis
References
- 9
- Cited by