Published online by Cambridge University Press: 20 January 2017
Four rates of aminopyralid (30, 60, 90, and 120 g ae ha−1 [0.4, 0.9, 1.3, and 1.8 oz ae acre−1]) were compared for their ability to reduce abundance of nonnative dicot species and favor native species in an invaded Cascade Mountain meadow near Trout Lake, WA. Treatments were applied in two replicated studies (June 2009 and 2010), and foliar cover and species richness were monitored for two years. First-year control of nonnative dicots from application of 30 g ae ha−1 of aminopyralid (69%) was greater than that of native dicots (29%); whereas, significant control of both species groups occurred at the higher rates. By the second year after treatment, absolute differences in cover between treated and non-treated plots averaged −17% and −21% for native and nonnative dicots, respectively, and +1% and +27% for native and nonnative monocots, respectively. First-year control of Canada thistle and oxeye daisy was greater after treatment in 2009 (88% and 90%, respectively) than after treatment in 2010 (56% and 55%, respectively), probably because lower spring temperatures in 2010 limited vegetation development and plant susceptibility to aminopyralid. Cover of Kentucky bluegrass and sheep fescue averaged 20% and 6% greater, respectively, in treated plots than in non-treated plots. Application of 30 g ae ha−1 of aminopyralid had no detectable effect on second-year richness of native and nonnative species relative to non-treated plots; however, higher rates caused 24% to 43% reductions in richness of each species group. Research results suggest that application of aminopyralid at 30 g ae ha−1 has the potential to reduce abundance of nonnative dicot species in similar meadow communities of the Pacific Northwest with little or no negative impacts to abundance and richness of native species. As a potential strategy to limit the subsequent spread of Kentucky bluegrass, a grass herbicide, such as fluazifop or sethoxydim, could be added to the treatment.