Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T12:47:09.908Z Has data issue: false hasContentIssue false

The biological basis of schizotypal personality disorder

Published online by Cambridge University Press:  13 June 2014

Richelle M Kirrane
Affiliation:
Department of Old Age Psychiatry, Carew House, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
Larry J Siever
Affiliation:
Bronx, VA Medical Centre, 136 West Kingsbridge Road, Bronx NY 10468, United States

Abstract

Schizotypal personality disorder is the DSM equivalent of the ICD category schizotypal disorder. It may be seen as part of the schizophrenia spectrum of disorders. Patients with schizotypal personality disorder (SPD) share many features with schizophrenic patients. These include symptoms of social isolation and cognitive impairment. They also share imaging and biochemical evidence of brain dysfunction, and genetic similarities. SPD patients, however, for some reason do not become chronically psychotic. The study of schizotypal patients is of great importance in attempting to clarify the genetic and biological basis of the schizophrenia spectrum. It is also important in helping to delineate the differences between schizophrenic and schizotypal patients, and to distinguish those factors that protect the schizotypal patient from becoming floridly psychotic. In this article we present recent findings regarding the biological basis of schizotypal personality disorder. We illustrate the contribution of these findings to our understanding of risk and protective factors in the schizophrenia spectrum.

Type
Perspective
Copyright
Copyright © Cambridge University Press 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Raine, A, Reynolds, C. Lencz, T. Scerbo, A, Triphon, N, Kim, D. Cognitive-perceptual, interpersonal and disorganised features of schizotypal personality. Schizophr Bull 1994;20:191202.CrossRefGoogle ScholarPubMed
2.Kendler, KS. Ochs, AL, Gorman, AM, Hewitt, JK, Ross, DE. Mirsky, AF. The structure of schizotypy: a pilot multitrait twin study. Psychiatry Res 1991; 36:1936.CrossRefGoogle ScholarPubMed
3.Siever, LJ, Friedman, L, Moskowitz, J, Mitropoulou, V, Keefe, R, Lees Roitman, Set al.Eye movement impairment and schizotypal pathology. Am J Psychiat 1994;151:1209–15.Google Scholar
4.Friedman, L, Jesberger, JA. Siever, I.J, Thompson, P, Mohs, R, Meltzer, HY. Smooth pursuit performance in patients with affective disorders or schizophrenia and normal controls: Analysis with specific oculomotor measures, RMS error and qualitative ratings. Psychol Med 1995;25:387403.CrossRefGoogle ScholarPubMed
5.Harvey, PD, Keefe, RS, Mitroupoulou, V. Dupre, R, Lees Roitman, S, Mohs, RCet al.Information-processing markers of vulnerability to schizophrenia: performance of patients with schizotypal and nonschizotypal personality disorders. Psychiatry Res 1996;60:4956.CrossRefGoogle Scholar
6.Lees Roitman, SE, Comblan, BA, Bergman, A, Obuchowski, M, Mitropoulou, V, Keefe, RSEet al.Attentional functioning in schizotypal personality disorder. Am J Psychiatry 1997;154:655–60.Google Scholar
7.Braff, DL. Impaired speed of information processing in non-medicated schizotypal patients. Schizophr Bull 1986; 7:499508.CrossRefGoogle Scholar
8.Sacuzzo, DP. Schubert, DL. Backward masking as a measure of slow processing in schizophrenia spectrum disorders. J Abnorm Psychol 1981; 86:261266.Google Scholar
9.Lenzenweger, M, Korfine, L. Perceptual aberrations, schizotypy and the Wisconsin Card sort Sorting test. Schizophr Bull 1994; 20(2): 345–57.CrossRefGoogle Scholar
10.Trestman, RL, Keefe, RS, Mitropoulou, V, Harvey, PD, deVegvar, ML, Lees Roitman, Set al.Cognitive function and biological correlates of cognitive performance in schizotypal personality disorder. Psychiatry Res 1995; 59:127136.CrossRefGoogle ScholarPubMed
11.Lees Roitman, SL, Mitropoulou, V. Keefe, RSE, Silverman, JM, Serby, M, Harvey, PDet al.Visuospatial working memory in schizotypal personality disorder. Schizophr Res. In press.Google Scholar
12.Voglmaier, MM. Seidman, LJ. Salisbury, D, Mc Carley, RW. Neuropsychological dysfunction in schizotypal personality disorder: A profile analysis. Biol Psychiatry 1997; 41:530540.CrossRefGoogle ScholarPubMed
13.Bergman, A, Harvey, P, Lees Roitman, S, Mohs, R, Silverman, J, Siever, LJ. Verbal learning and memorv in schizotypal personality disorder. Schizophr Hull 1998; 24(4) 635–41.CrossRefGoogle ScholarPubMed
14.Kiznikiewicz, MA, Voglmaier, M, Shenton, ML, Seidman, LJ, Dickey, CC, Rhoads, Ret al.Electrophysiological correlates of language processing in schizotypal personality disorder. Am Psychiatry 1999;156:1052–8.CrossRefGoogle Scholar
15.Siever, LJ, Rotter, M, Losonezy, M. Giio, SL, Mitropoulou, V, Trestman, Ret al.Lateral ventricular enlargement in schizotypal personality disorder. Psychiatry Res 1995; 57: 109118.CrossRefGoogle ScholarPubMed
16.Silverman, JM, Smith, CJ, Guo, SL, Mohs, RC, Siever, LJ, Davis, KL. Lateral ventricular enlargement in schizophrenic probands and their siblings with schizophrenia-related disorders. Biol Psychiat 1998;43:97106.CrossRefGoogle ScholarPubMed
17.Buchsbaum, MS, Yang, S, Hazlett, E, Siegel, BV, Germans, M, Haznedar, Met al.Ventricular volume and asymmetry in schizotypal personality disorder and schizophrenia assessed with magnetic resonance imaging. Schizophr Res 1997; 27: 4553.CrossRefGoogle ScholarPubMed
18.McCarley, RW, Salisbury, D, Voglmaier, Met al.Temporal lobe dysfunction and schizotypal personality disorder. American Psychiatric Association Annual Mtg, Miami. Fl. 1995; 34D.Google Scholar
19.Downhill, JE, Buchsbaum, MS, Hazlett, EA, Barth, S, Lees Roiiman, S, Nunn, Met al.Temporal lobe volume in schizotypal personality disorder and schizophrenia. American Psychiatric Association Annual Meeting, San Diego, CA. 1997; NR 172.Google Scholar
20.Kwon, JS, Shenton, ME, Hirayasu, Y. Salisbury, DE, Fischer, IA, Dickey, CCet al.MRI study of cavum septi pellucidi in schizophrenia, affective disorder and schizotypal disorder. Am J Psychiat 1998;155:509–15.CrossRefGoogle Scholar
21.Raine, A, Sheard, C, Reynolds, GP. Lencz, T. Pre-frontal structural and functional deficits associated with individual differences in schizotypal personality. Schizophr Res 1992;7:237247.CrossRefGoogle ScholarPubMed
22.Siever, LI, Kalus, OF. Keefe, RS. The boundaries of schizophrenia. Psychiatr Clin North Am 1993; 16:217244.CrossRefGoogle ScholarPubMed
23.Buchsbaum, MS, Trestman, RL. Hazlett, E, Siegel, BV, Shaefer, CH, Luu, Cet al.Regional cerebral blood flow during the Wisconsin Card Sort Test in schizotypal personality disorder. Schizophr Res 1997;27:21–8.CrossRefGoogle ScholarPubMed
24.Davidson, M, Davis, KL. A comparison of plasma homovanillic acid concentrations in schizophrenics and normal conrrols. Arch Gen Psychiatry 1988;45:561563.CrossRefGoogle Scholar
25.Amin, F. Siever, LJet al.Plasma UVA in schizotypal personality disorder. In: Friedhoff, AJ, Amin, F, editors. Plasma homovanillic acid studies in schizophrenia, implications for presynaptic dopamine dysfunction. Washington DC: American Psychiatric Press 1997: 133–49.Google Scholar
26.Goldberg, SC. Scluilz, SC, Schulz, PM, Resnick, RJ, Plainer, RM, Friedel, RO. Borderline and schizotypal personality disorders treared with low-dose thiothixene versus placebo. Arch Gen Psychiatry 1986;43:680–6.CrossRefGoogle Scholar
27.Hymowitz, P, Frances, A, Jacobsberg, LB, Sickles, M, Hoyt, R. Neuroleptic treatment of schizotypal personality disorder. Compr Psychiat 1986; 27: 267–71.CrossRefGoogle Scholar
28.Szigethy, EM, Schulz, SC. Risperidone in comorbid borderline personality disorder and dysthymia. J Clin Psychopharmacol 1997; 17(4): 326–7.CrossRefGoogle ScholarPubMed
29.Siegel, BV, Trestman, RL, O'Flaithbheartaigh, S, Mitropoulou, V, Amin, F, Kirrane, Ret al.Damphetamine challenge effects on Wisconsin card sort test. Performance in schizotypal personality disorder. Schizophr Res 1996; 20: 2932.CrossRefGoogle ScholarPubMed
30.Kirrane, RM, Mitropoulou, V, Nunn, M, New, AS, Harvey, PD, Schopick, F, Silverman, J, Siever, LJ. Effects of amphetamine on visuospatial working memory in schizophrenia spectrum personality disorder. Neuropsychopharmacology. In press.Google Scholar
31.Williams, GV, Goldman-Rakic, PS. Modulation of memory fields by dopamine Dl receptors in prefrontal cortex. Nature 1995;376:572–5.CrossRefGoogle Scholar
32.Lipska, BK. Jaskiw, GE, Weinberger, DR. Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage. A potential animal model of schizophrenia. Neuropsychopharmacology 1993; 9:6775.CrossRefGoogle Scholar
33.Weinberger, DR, Berman, KF, Suddath, R, Torrey, EF. Evidence of dysfunction of a prefrontal-limbic network in schizophrenia. A magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. Am J Psych 1992; 149(7): 890–7.Google ScholarPubMed
34.Suddath, RL, Christison, GW, Torrey, FE, Casanova, MF, Weinberger, D. Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. N Engl J Med 1990; 322(12): 789–94.CrossRefGoogle ScholarPubMed
35.Pycock, CS, Kerwin, RW, Carter, CJ. Effect of lesion of cortical dopamine terminals on subcortical dopamine in rats. Nature 1980; 286:7477.CrossRefGoogle ScholarPubMed
36.Weinberger, DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 1987;44:660–9.CrossRefGoogle ScholarPubMed
37.Davis, KL, Kahn, RS, Ko, G, Davidson, M. Dopamine and schizophrenia: a reconceptualisation. Am J Psychiat 1991;148:1474–86.Google Scholar
38.Abi-Dargham, A, Gil, R, Krystal, J, Baldwin, R, Seibyl, JP, Bowers, Met al.Increased striatal dopamine transmission in schizophrenia; confirmation in a second cohort. Am J Psychiat 1998;155:761–7.Google ScholarPubMed
39.Breier, A, Su, TP, Saunders, R, Carson, RE, Kolachana, BS, de Bartolomeis, Aet al.Schizophrenia is associated with elevated amphetamine — induces synaptic dopamine concentrations: Evidence from a novel positron emission tomography method. Proc Natl Acad Sci USA 1997;94:2569–74.CrossRefGoogle ScholarPubMed