Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-16T04:35:21.393Z Has data issue: false hasContentIssue false

The cellulase content of 15 species of entodiniomorphid protozoa, mixed bacteria and plant debris isolated from the ovine rumen

Published online by Cambridge University Press:  27 March 2009

G. S. Coleman
Affiliation:
Biochemistry Department, Agricultural and Food Research Council Institute of Animal Physiology, Babraham, Cambridge, CB2 4AT

Summary

The cellulolytic activity of cell-free extracts of 15 species of entodiniomorphid protozoa grown in vitro and under two conditions in vitrohas been measured using six different assays with substrates varying in complexity from carboxymethylcellulose to microcrystalline cellulose. Although there were differences between the assays, the highest activities were found in Eudiplodinium maggii, Epidinium ecaudatum caudatum and Ostracodinium obtusum bilobum with little or no activity in five Entodiniumspp. There was no consistent effect of growth conditions on cellulase content although with protozoa grown in vitro those grown on grass alone tended to contain more cellulase than those grown on starch and grass.

A survey of methods for the release of cellulase from other rumen fractions was made and mild treatment with ultrasound of the fraction suspended in water gave the maximal release of enzyme with the highest specific activity. Using this method 62% of the total rumen cellulase was found in the protozoal fraction and 27% was associated with the plant debris in a normal sheep, fed on hay and oats, with an A-type protozoal population.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amos, H. E. & Akin, D. E. (1978). Rumen protozoal degradation of structurally intact forage tissues. Applied and Environmental Microbiology 36, 513522.CrossRefGoogle ScholarPubMed
Bailey, R. W. (1958). Bloat in cattle. X. The carbohydrases of the cattle rumen ciliate Epidinium ecaudatum Crawley isolated from cows fed on red clover (Trifolium pratense L.). New Zealand Journal of Agricultural Research 1, 825833.CrossRefGoogle Scholar
Bonhomme-Florentin, A. (1975). Activité Cellulolytique des ciliés Entodiniomorphes. Journal of Protozoology 22, 447451.CrossRefGoogle Scholar
Coleman, G. S. (1978). Rumen entodiniomorphid protozoa. In Methods of Cultivating Parasites in vitro (ed. Baker, J. R. and Taylor, A. E. R.), pp. 3954. London: Academic Press.Google Scholar
Coleman, G. S. (1981). Rumen ciliate protozoa. Advances in Parasitology 18, 121173.CrossRefGoogle Scholar
Coleman, G. S. (1983). The cellulolytic activity of thirteen species of rumen Entodiniomorphid protozoa. Journal of Protozoology 30, 36 A.Google Scholar
Coleman, G. S. (1984). A comparison of the cellulolytic activities of rumen bacteria and protozoa. Applied Biochemistry and Biotechnology 9, 347348.CrossRefGoogle Scholar
Coleman, G. S. & Laurie, J. I. (1977). The metabolism of starch, glucose, amino acids, purines, pyrimidines and bacteria by the rumen ciliate Poly plastron multivesiculatum. Journal of General Microbiology 98, 579588.CrossRefGoogle Scholar
Coleman, G. S., Laurie, J. I., Bailey, J. E & Holdgate, S. A. (1976). The cultivation of cellulolytic protozoa isolated from the rumen. Journal of General Microbiology 95, 144150.CrossRefGoogle ScholarPubMed
Coleman, G. S. & Reynolds, D. J. (1982). The effect of sterols and haemin on the growth of the rumen ciliate Ophryoscolex caudatus and some other Entodiniomorphid protozoa. Journal of Applied Bacteriology 52, 129134.CrossRefGoogle Scholar
Coleman, G. S. & Sandford, D. C. (1978). The metabolism of cellulose, glucose and starch by the rumen ciliate protozoon Eudiplodinium maggii. Journal of eneral Microbiology 107, 359366.Google Scholar
Coleman, G. S. & Sandford, D. C. (1979). The engulfment and digestion of mixed rumen bacteria and individual bacterial species by single and mixed species of rumen ciliate protozoa grown in vivo. Journal of Agricultural Science, Cambridge 92, 729–742.CrossRefGoogle Scholar
Coleman, G. S. & Sandford, D. C. (1980). The uptake and metabolism of bacteria, amino acids, glucose and starch by the spined and spineless forms of the rumen ciliate Entodinium caudatum. Journal of General Microbiology 117, 411418.Google ScholarPubMed
Delfosse-Debusscher, J., Thines-Sempoux, D., Vanbelle, M. & Latteur, B. (1979). Contribution of protozoa to the rumen cellulolytic activity. Annales de Recherches Vétérinaires 10, 255257.Google Scholar
Demeyer, D. I. (1981). Rumen microbes and digestion of plant cell walls. Agriculture and Environment 6, 295337.CrossRefGoogle Scholar
Dinsdale, D., Morris, E. J. & Bacon, J. S. D. (1978). Electron microscopy of the microbial population present and their mode of attack on various cellulosic substrates undergoing digestion in the sheep rumen. Applied and Environmental Microbiology 36, 160168.CrossRefGoogle Scholar
Eadie, J. M. (1962). Interrelationships between certain rumen ciliate protozoa. Journal of General Microbiology 29, 579588.CrossRefGoogle Scholar
Eadie, J. M. (1967). Studies on the ecology of certain rumen ciliate protozoa. Journal of General Microbiology 49, 175194.CrossRefGoogle ScholarPubMed
Eadie, J. M. & Gill, J. C. (1971). The effect of absence of rumen ciliate protozoa on growing lambs fed on a roughage–concentrate diet. British Journal of Nutrition 26, 155167.CrossRefGoogle ScholarPubMed
Francis, G. L., Gawthorne, J. M. & Storer, G. B. (1978). Factors affecting the activity of cellulases isolated from the rumen digesta of sheep. Applied and Environmental Microbiology 36, 643649.CrossRefGoogle ScholarPubMed
Groleau, D. & Forsberg, C. W. (1981). Cellulolytic activity of the rumen bacterium Bacteroides succinogenes. Canadian Journal of Microbiology 27, 517530.CrossRefGoogle ScholarPubMed
Hotten, P. M., Jones, K. L. & Grainger, J. M. (1983). The application of a mathematical model to an appraisal of the cellulose-azure method for determining cellulase activity. European Journal of Applied Microbiology and Biotechnology 18, 344349.CrossRefGoogle Scholar
Huggett, A. St. G. & Nixon, D. A. (1957). Use of glucose oxidase, peridoxase and o-dianisidine in determination of blood and urinary glucose. Lancet ii, 368.CrossRefGoogle Scholar
Hungate, R. E. (1942). The culture of Eudiplodinium neglectumwith experiments on the digestion of cellulose. Biological Bulletin, Marine Biological Laboratory, Woods Hole, Massachusetts 83, 303319.CrossRefGoogle Scholar
Hungate, R. E. (1943). Further experiments on cellulose digestion by protozoa in the rumen of cattle. Biological Bulletin, Marine Biological Laboratory, Woods Hole, Massachusetts 84, 157163.CrossRefGoogle Scholar
Jouany, J. P. & Senaud, J. (1979). Role of rumen protozoa in the digestion of food cellulosic materials. Annales de Recherches Vétérinaires 10, 261263.Google ScholarPubMed
Jouany, J. P., Zainab, B., Senaud, J., Grolier, C. A., Grain, J. & Thivend, P. (1981). Role of the rumen ciliate protozoa Polyplastron multivesiculatum, Entodinium sp. and Isotricha prostoma in the digestion of a mixed diet in sheep. Reproduction Nutrition Développement 21, 871884.CrossRefGoogle ScholarPubMed
Kayouli, C., Demeyer, D. & Van Nevel, C. (1982). La défaunation du rumen: technique pour améliorer la production des ruminants avec aliments tropicaux ? In Proceedings of the International Colloquium on Tropical Animal Production for the Benefit of Man, pp. 302308. Antwerp.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
Luther, R., Trenkle, A. & Burroughs, W. (1966). Influence of rumen protozoa on volatile acid production and ration digestibility in lambs. Journal of Animal Science 25, 11161122.CrossRefGoogle Scholar
Mah, R. A. & Hungate, R. E. (1965). Physiological studies on the rumen ciliate Ophryoscolex purkynei (Stein). Journal of Protozoology 12, 131136.CrossRefGoogle ScholarPubMed
Miller, G. L., Blum, R., Glennon, W. E. & Burton, A. L. (1960). Measurement of carboxymethylcellulose activity. Analytical Biochemistry 1, 127132.CrossRefGoogle Scholar
Nelson, N. (1944). A photometric adaptation of the Somogyi method for the determination of glucose. Journal of Biological Chemistry 153, 375380.CrossRefGoogle Scholar
Orpin, C. G. & Letcher, A. J. (1979). Utilization of cellulose, starch, xylan and other hemicelluloses for growth by the rumen phycomycete Neocallimastix frontalis. Current Microbiology 3, 121124.CrossRefGoogle Scholar
Purser, D. B. & Moir, R. J. (1959). Ruminal flora studies in the sheep. IX. The effect of pH on the ciliate population of the rumen in vivo. Australian Journal of Agricultural Research 10, 555564.CrossRefGoogle Scholar
Stewart, C. S. (1977). Factors affecting the cellulolytic activity of rumen contents. Applied and Environmental Microbiology 33, 497502.CrossRefGoogle ScholarPubMed
Veira, D. M., Ivan, M. & Jui, P. Y. (1983). Rumen ciliate protozoa: effects on digestion in the stomach of sheep. Journal of Dairy Science 66, 10151022.CrossRefGoogle ScholarPubMed
Williams, A. G., Withers, S. E. & Coleman, G. S. (1984). Glycoside hydrolases of rumen bacteria and protozoa. Current Microbiology 10, 287294.CrossRefGoogle Scholar
Wood, T. H., Wilson, C. A. & Stewart, C. S. (1982). Preparation of the cellulase from the cellulolytic anaerobic bacterium Ruminococcus albus and its release from the bacterial cell wall. Biochemical Journal 205, 129137.CrossRefGoogle ScholarPubMed
Yoder, R. D., Trenkle, A. & Burroughs, W. (1965). Influence of rumen protozoa and bacteria upon cellulose digestion in vitro. Journal of Animal Science 25, 609612.CrossRefGoogle Scholar