Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T00:52:09.845Z Has data issue: false hasContentIssue false

Components of herbage accumulation in elephant grass cvar Napier subjected to strategies of intermittent stocking management

Published online by Cambridge University Press:  17 October 2013

L. E. T. PEREIRA
Affiliation:
ESALQ/USP, C.P. 09 – 13418-900 -Piracicaba, Sao Paolo, Brazil
A. J. PAIVA
Affiliation:
ESALQ/USP, C.P. 09 – 13418-900 -Piracicaba, Sao Paolo, Brazil
E. V. GEREMIA
Affiliation:
ESALQ/USP, C.P. 09 – 13418-900 -Piracicaba, Sao Paolo, Brazil
S. C. DA SILVA*
Affiliation:
ESALQ/USP, C.P. 09 – 13418-900 -Piracicaba, Sao Paolo, Brazil
*
*To whom all correspondence should be addressed. Email: siladasilva@usp.br

Summary

Herbage accumulation is determined by the tissue turnover of individual plants and by the regulation patterns of the number of individuals in a plant population, which function in conjunction to enable swards to adapt to variations in growth and management conditions. Based on the hypothesis that intermittent grazing strategies change the proportion of basal and aerial tillers and, consequently, sward herbage accumulation, the objective of the current experiment was to evaluate the components of herbage accumulation in elephant grass cvar Napier (Pennisetum purpureum Schum. cvar Napier) from January 2011 to April 2012. The treatments corresponded to combinations of two post-grazing (post-grazing heights of 35 and 45 cm) and two pre-grazing conditions (0·95 and maximum canopy light interception during regrowth – LI0·95 and LIMax) and were allocated to experimental units (850 m2 paddocks) according to a 2×2 factorial arrangement in a complete randomized block design with four replications. The following response variables were evaluated: the population density of basal tillers (TPDb) and the population density of aerial tillers (TPDa), the number of aerial tillers per supporting unit (A/B+VC), growth rates of the leaf (LGR) and stem (SGR), leaf senescence rate, net leaf accumulation rate (LAR), and the contributions of basal and aerial tillers to sward growth and senescence. The swards managed with the LI0·95 target had greater TPDb than those managed with the LIMax target, but no difference was recorded between the LI pre-grazing targets for TPDa. The larger A/B+VC ratio recorded for the swards managed with the LIMax target resulted in a higher contribution of aerial tillers to the growth and senescence of swards. This growth strategy resulted in a higher SGR and lower LGR and LAR for the swards managed with the LIMax target relative to those managed with the LI0·95 target. The post-grazing height targets affected only LGR during winter and the second summer and SGR on average for the experiment, with higher values recorded for the swards managed at 35 cm. The LI pre-grazing targets played a central role in defining the compensatory mechanisms responsible for the competitive ability of the plants, which were primarily expressed in the variation of the proportion of basal and aerial tillers in the tiller population and interfered with the components of herbage accumulation and total herbage yield of the swards.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alcântara, P. B. & Bufarah, G. (1983). Plantas Forrageiras: Gramíneas e Leguminosas, 2nd edn. São Paulo, Brazil: Nobel.Google Scholar
Assuero, S. G. & Tognetti, J. A. (2010). Tillering regulation by endogenous and environmental factors and its agricultural management. Americas of Plant Science and Biotechnology 4(Sp. Iss. 1), 3548.Google Scholar
Barbosa, R. A., do Nascimento, D. Júnior, Euclides, V. P. B., Da Silva, S. C., Zimmer, A. H. & Torres, R. A. A. Júnior (2007). Capim Tanzânia submetido a combinações entre intensidade e frequência de pastejo. Pesquisa Agropecuária Brasileira 42, 329340.Google Scholar
Benvenutti, M. A., Gordon, I. J. & Poppi, D. P. (2008). The effects of stem density of tropical swards and age of grazing cattle on their foraging behaviour. Grass and Forage Science 63, 18.Google Scholar
Bircham, J. S. & Hodgson, J. (1983). The influence of sward condition on rates of herbage growth and senescence in mixed swards under continuous stocking management. Grass and Forage Science 38, 323331.CrossRefGoogle Scholar
Carnevalli, R. A. (2003). Dinâmica da rebrotação em pastos de capim-mombaça submetidos a regimes de desfolhação intermitente. Ph.D. Thesis, Escola Superior de Agricultura ‘Luiz de Queiroz’, Universidade de São Paulo, Piracicaba, Brazil.Google Scholar
Carnevalli, R. A., Da Silva, S. C., Bueno, A. A. O., Uebele, M. C., Bueno, F. O., Hodgson, J., Silva, G. N. & Morais, J. P. G. (2006). Herbage production and grazing losses in Panicum maximum cv. Mombaça under four grazing management. Tropical Grasslands 40, 165176.Google Scholar
Casal, J. J., Sanchez, R. A. & Deregibus, V. A. (1986). The effect of plant density on tillering: involvement of r/fr ratio and the proportion of radiation intercepted per plant. Environmental and Experimental Botany 26, 365371.CrossRefGoogle Scholar
Colasanti, J. & Coneva, V. (2009). Mechanisms of floral induction in grasses: something borrowed, something new. Plant Physiology 149, 5662.CrossRefGoogle ScholarPubMed
Corsi, M., Silva, S. C. & Faria, V. P. (1996). Princípios de manejo do Capim-Elefante sob pastejo. In Pastagens de Capim-Elefante: Utilização Intensiva (Eds Peixoto, A. M., Moura, J. C. & Faria, V. P.), pp. 5170. Piracicaba: FEALQ.Google Scholar
Da Silva, S. C., Bueno, A. A. O., Carnevalli, R. A., Uebele, M. C., Bueno, F. O., Hodgson, J., Matthew, C., Arnold, G. C. & Morais, J. P. G. (2009). Sward structural characteristics and herbage accumulation of Panicum maximum cv. Mombaça subject to rotational stocking managements. Scientia Agricola 66, 819.CrossRefGoogle Scholar
Derner, J. D. & Briske, D. D. (1998). An isotopic (15N) assessment of intraclonal regulation in C4 perennial grasses: ramet interdependence, independence or both? Journal of Ecology 86, 305315.CrossRefGoogle Scholar
Derner, J. D., Briske, D. D. & Polley, H. W. (2012). Tiller organization within the tussock grass Schizachyrium scoparium: a field assessment of competition–cooperation tradeoffs. Botany 90, 669677.Google Scholar
Difante, G. S., Nascimento, D. Júnior, Euclides, V. P. B., Da Silva, S. C., Barbosa, R. A. & Gonçalves, W. V. (2009). Sward structure and nutritive value of Tanzânia guineagrass subjected to rotational stocking managements. Revista Brasileira de Zootecnia 38, 919.Google Scholar
Eissenstat, D. M. & Caldwell, M. M. (1987). Characteristics of successful competitors: an evaluation of potential growth rate in two cold desert tussock grasses. Oecologia 71, 167173.Google Scholar
Fonseca, L., Mezzalira, J. C., Bremm, C., Filho, R. S. A., Gonda, H. L. & Carvalho, P. C. F. (2012). Management targets for maximizing the short-term herbage intake rate of cattle grazing in Sorghum bicolor . Livestock Science 145, 205211.Google Scholar
Gildersleeve, R. R., Ocumpaugh, W. R., Quesenberry, K. H. & Moore, J. E. (1987). Mob-grazing of morphologically different Aeschynomene species. Tropical Grasslands 21, 123132.Google Scholar
Gold, W. G. & Caldwell, M. M. (1990). The effects of the spatial pattern of defoliation on regrowth of a tussock grass. III. Photosynthesis, canopy structure and light interception. Oecologia 82, 1217.CrossRefGoogle ScholarPubMed
Hartnett, D. C. & Bazzaz, F. A. (1983). Physiological integration among intraclonal ramets in Solidago canadensis . Ecology 64, 779788.Google Scholar
Huber-Sannwald, E., Pyke, D. A. & Caldwell, M. M. (1996). Morphological plasticity following species-specific recognition and competition in two perennial grasses. American Journal of Botany 83, 919931.CrossRefGoogle Scholar
Jewiss, O. R. (1972). Tillering in grasses: Its significance and control. Journal of the British Grassland Society 27, 6582.CrossRefGoogle Scholar
Lemaire, G. (2001). Ecophysiology of grasslands: dynamic aspects of forage plant populations in grazed swards. In Ecophysiology of Grassland, Proceedings of the XIX International Grassland Congress (Eds Gomide, J. A., Mattos, W. R. S. & Da Silva, S. C.), pp. 2937. Sao Pedro, Sao Paulo, Brazil: International Grassland Congress.Google Scholar
Lemaire, G. & Agnusdei, M. (2000). Leaf tissue turn-over and efficiency of herbage utilization. In Grassland Ecophysiology and Grazing Ecology (Eds Lemaire, G. Hodgson, J., Moraes, A., Nabinger, C. & Carvalho, P. C. F.), pp. 265288. Wallingford, UK: CAB International.CrossRefGoogle Scholar
Lemaire, G. & Chapman, D. (1996). Tissue fluxes in grazing plant communities. In The Ecology and Management of Grazing Systems (Eds Hodgson, J. & Illius, A. W.), pp. 336. Wallingford, UK: CAB International.Google Scholar
Littell, R. C., Milliken, G. A., Stroup, W. W. & Wolfinger, R. D. (1996). SAS System for Mixed Models. Cary, USA: SAS Institute.Google Scholar
Marshall, C. (1996). Sectoriality and physiological organisation in herbaceous plants: an overview. Vegetatio 127, 916.Google Scholar
McSteen, P. (2009). Hormonal regulation of branching in grass. Plant Physiology 149, 4655.Google Scholar
McWilliam, J. R. (1968). The nature of the perennial response in mediterranean grasses. Australian Journal of Agricultural Research 19, 397409.Google Scholar
Morais, R. V., Fonseca, D. M., Nascimento, D. Júnior, Ribeiro, J. I. Júnior, Fagundes, J. L., Moreira, L. M., Mistura, C. & Martuscello, J. A. (2006). Demografia de perfilhos basilares em pastagem de Brachiaria decumbens adubada com nitrogênio. Revista Brasileira de Zootecnia 35, 380388.CrossRefGoogle Scholar
Murphy, J. S. & Briske, D. D. (1992). Regulation of tillering by apical dominance: chronology, interpretative value and current perspectives. Journal of Range Management 45, 419429.Google Scholar
Paiva, A. J. (2013). Padrões demográficos de perfilhamento e dinâmica da população de perfilhos em pastos de capim-elefante cv. Napier submetidos a estratégias de pastejo rotativo. Ph.D. Thesis, Escola Superior de Agricultura ‘Luiz de Queiroz’: Universidade de São Paulo.Google Scholar
Rêgo, F. C. A., Cecato, U., Canto, M. W., Martins, E. N., Santos, G. T., Cano, C. P. & Peternelli, M. (2002). Características morfológicas e índice de área foliar do capim-tanzânia (Panicum maximum Jacq. cv. Tanzânia-1) manejado em diferentes alturas, sob pastejo. Revista Brasileira de Zootecnia 31, 19311937.Google Scholar
Santos, M. E. R., da Fonseca, D. M., Gomes, V. M., da Silva, S. P. & Pimentel, R. M. (2010). Morfologia de perfilhos basais e aéreos em pasto de Brachiaria decumbens manejado em lotação contínua. Enciclopédia Biosfera – Centro CientíficoConhecer– Goiânia 6, 113.Google Scholar
Stuefer, J. F. (1998). Two types of division of labour in clonal plants: benefits, costs and constraints. Perspectives in Plant Ecology, Evolution and Systematics 1, 4760.CrossRefGoogle Scholar
Sylvester, A. W., Parker-Clark, V. & Murray, G. A. (2001). Leaf shape and anatomy as indicators of phase change in the grasses: comparison of maize, rice, and bluegrass. American Journal of Botany 88, 21572167.Google Scholar
Vuorisalo, T. & Hutchings, M. J. (1996). On plant sectoriality, or how to combine the benefits of autonomy and integration. Vegetatio 127, 38.CrossRefGoogle Scholar
Wan, C. & Sosebee, R. E. (2000). Central dieback of the dryland bunchgrass Eragrostis curvula (weeping lovegrass) re-examined: The experimental clearance of tussock centres. Journal of Arid Environments 46, 6978.Google Scholar
Wan, C. & Sosebee, R. E. (2002). Tiller recruitment and mortality in the dryland bunchgrass (Eragrostis curvula) as affected by defoliation intensity. Journal of Arid Environments 51, 577585.Google Scholar
Watson, M. A. & Casper, B. B. (1984). Morphogenetic constraints on patterns of carbon distribution in plants. Annual Review of Ecology and Systematics 15, 233258.Google Scholar
Wolfinger, R. D. (1993). Covariance structure selection in general mixed models. Communications in Statistics: Simulation and Computation 22, 10791106.Google Scholar
Zanini, G. D., Santos, G. T. & Sbrissia, A. F. (2012). Frequencies and intensities of defoliation in Aruana Guineagrass swards: accumulation and morphological composition of forage. Revista Brasileira de Zootecnia 41, 905913.Google Scholar