Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T02:09:54.910Z Has data issue: false hasContentIssue false

A decision support system for the control of Campylobacter in chickens at farm level using data from Denmark

Published online by Cambridge University Press:  07 March 2016

A. B. GARCIA*
Affiliation:
DTU FOOD, Denmark Technical University, Lyngby, Denmark
A. L. MADSEN
Affiliation:
Computer Science Department, Aalborg University, Aalborg, Denmark HUGIN EXPERT, Aalborg, Denmark
H. VIGRE
Affiliation:
DTU FOOD, Denmark Technical University, Lyngby, Denmark
*
*To whom all correspondence should be addressed. Email: annagarcia10@hotmail.com

Summary

The control of Campylobacter in poultry is considered a public health priority and some intervention strategies have been implemented in Denmark. Nonetheless, Campylobacter infection in poultry can still be considerable particularly during the summer when the most promising Campylobacter control strategy seems to be the use of fly screens. The use of cost-effective vaccines against Campylobacter is also desirable. In order to control Campylobacter, poultry producers need to make crucial decisions under conditions of uncertainty. With the aim of assisting poultry producers in decision making regarding Campylobacter control strategies, the objective of the present study was to produce a decision support system that integrated knowledge and used a Bayesian approach to handle uncertainty. This decision support system integrated epidemiological data, microbiological considerations, financial information and potential control strategies (the use of fly screens and hypothetical vaccines). In conclusion, results from model and sensitivity analyses indicated that the financial variables (cost–benefit functions) and the effectiveness of the different control strategies drove the results.

Type
Modelling Animal Systems Research Paper
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bahrndorff, S., Rangstrup-Christensen, L., Nordentoft, S. & Hald, B. (2013). Foodborne disease prevention and broiler chickens with reduced Campylobacter infection. Emerging Infectious Diseases 19, 425430.CrossRefGoogle ScholarPubMed
Barrios, P. R., Reiersen, J., Lowman, R., Bisaillon, J. R., Michel, P., Fridriksdóttir, V., Gunnarsson, E., Stern, N., Berke, O., McEwen, S. & Martin, W. (2006). Risk factors for Campylobacter spp. colonization in broiler flocks in Iceland. Preventive Veterinary Medicine 74, 264278.CrossRefGoogle ScholarPubMed
Berndtson, E., Emanuelson, U., Engvall, A. & Danielsson-Tham, M. L. (1996). A 1-year epidemiological study of campylobacters in 18 Swedish chicken farms. Preventive Veterinary Medicine 26, 167185.Google Scholar
Boysen, L. (2012). Campylobacter in Denmark. Ph.D. Thesis, Denmark Technical University, Denmark.Google Scholar
Boysen, L., Vigre, H. & Rosenquist, H. (2011). Seasonal influence on the prevalence of thermotolerant Campylobacter in retail broiler meat in Denmark. Food Microbiology 28, 10281032.CrossRefGoogle ScholarPubMed
Cardinale, E., Tall, F., Gueye, E. F., Cisse, M. & Salvat, G. (2004). Risk factors for Campylobacter spp. infection in Senegalese broiler-chicken flocks. Preventive Veterinary Medicine 64, 1525.Google Scholar
Chowdhury, S., Sandberg, M., Themudo, G. E. & Ersbøll, A. K. (2012). Risk factors for Campylobacter infection in Danish broiler chickens. Poultry Science 91, 27012709.Google Scholar
Christensen, B. B., Sommer, H. M., Rosenquist, H. & Nielsen, N. L. (2001). Risk Assessment of Campylobacter jejuni in Chicken Products. Glostrup, Denmark: The Danish Veterinary and Food Administration.Google Scholar
Dianova (2013). Salmonella. Aarhus, Denmark: Dianova. Available from: http://www.dianova.dk/Consultancies/Salmonella.aspx (verified 9 December 2015).Google Scholar
EFSA Panel on Biological Hazards (Biohaz) (2011). Scientific opinion on Campylobacter in broiler meat production: control options and performance objectives and/or targets at different stages of the food chain. EFSA Journal 9, 2105. doi: 10.2903/j.efsa.2011.2105.Google Scholar
Farmtal Online (2013). Agricultural Database Managed by the Danish Knowledge Centre for Agriculture (VFL). Available from: https://farmtalonline.dlbr.dk/Navigation/NavigationTree.aspx?Farmtal=221 (verified 19 July 2013).Google Scholar
Forsythe, S. J. (2002). Application of microbiological risk assessment. In The Microbiological Risk Assessment of Food (Ed. Forsythe, S. J.), pp. 113173. Oxford, UK: Blackwell Publishing.Google Scholar
Garcia, A. B., Bahrndorff, S., Hald, B., Hoorfar, J., Madsen, M. & Vigre, H. (2012). Design and data analysis of experimental trials to test vaccine candidates against zoonotic pathogens in animals: the case of a clinical trial against Campylobacter in broilers. Expert Review of Vaccines 11, 11791188.Google Scholar
Garcia, A. B., Madsen, A. L. & Vigre, H. (2013). Integration of epidemiological evidence in a decision support model for the control of Campylobacter in poultry production. Agriculture 3, 516535.Google Scholar
Greenland, S. (2006). Bayesian perspectives for epidemiological research: I. Foundations and basic methods. International Journal of Epidemiology 35, 765775.Google Scholar
Guerin, M. T., Martin, W., Reiersen, J., Berke, O., McEwen, S. A., Bisaillon, J. R. & Lowman, R. (2007). House-level risk factors associated with the colonization of broiler flocks with Campylobacter spp. in Iceland, 2001–2004. BMC Veterinary Research 3, 30. doi: 10.1186/1746-6148-3-30.Google Scholar
Hald, B., Wedderkopp, A. & Madsen, M. (2000). Thermophilic Campylobacter spp. in Danish broiler production: a cross-sectional survey and a retrospective analysis of risk factors for occurrence in broiler flocks. Avian Pathology 29, 123131.Google Scholar
Hald, B., Skovgard, H., Bang, D. D., Pedersen, K., Dybdahl, J., Jespersen, J. B. & Madsen, M. (2004). Flies and Campylobacter infection of broiler flocks. Emerging Infectious Diseases 10, 14901492.Google Scholar
Hald, B., Sommer, H. M. & Skovgard, H. (2007). Use of fly screens to reduce Campylobacter spp. introduction in broiler houses. Emerging Infectious Diseases 13, 19511953.Google Scholar
Heckerman, D., Mamdani, A. & Wellman, M. P. (1995). Real-World Applications of Bayesian Networks. Communications of the ACM 38, 2426.CrossRefGoogle Scholar
Heuer, O. E., Sommer, H. M., Wong, D. L. F., Patrick, M. E., Wainø, M., Wedderkopp, A. & Madsen, M. (2007). Risk factors for the occurrence of campylobacter in Danish broiler flocks (poster presentation). Zoonoses and Public Health 54(Suppl. 1), 138.Google Scholar
Jensen, F. V. (1996). An Introduction to Bayesian Networks, Vol. 210. London: UCL Press.Google Scholar
Johnsen, G., Kruse, H. & Hofshagen, M. (2006). Genetic diversity and description of transmission routes for Campylobacter on broiler farms by amplified-fragment length polymorphism. Journal of Applied Microbiology 101, 11301139.Google Scholar
Lawson, L. G., Jensen, J. D. & Lund, M. (2009). Cost of Interventions against Campylobacter in the Danish Broiler Supply Chain. Report no. 201. Copenhagen: Institute of Food and Resource Economics.Google Scholar
Lowman, R., Reiersen, J., Jónsson, T., Gunnarsson, E., Bisaillon, J. R. & Daoadottir, S. (2009). Iceland: 2008 pilot year fly netting ventilation inlets of 35 broiler houses to reduce flyborne transmission of Campylobacter spp. to flocks. In Abstracts of the 15th International Workshop on Campylobacter, Helicobacter and Related Organisms (CHRO), Sep 2–5, Niigata, Japan. Abstract 210, p. 140. Niigata, Japan: CHRO.Google Scholar
Lyngstad, T. M., Jonsson, M. E., Hofshagen, M. & Heier, B. T. (2008). Risk factors associated with the presence of Campylobacter species in Norwegian broiler flocks. Poultry Science 87, 19871994.Google Scholar
Madsen, A. L., Karlsen, M., Barker, G. C., Garcia, A. B., Hoorfar, J. & Jensen, F. (2012). An Architecture for Web Deployment of Decision Support Systems Based on Probabilistic Graphical Models with Applications. Technical Report TR-12-001. Aalborg, Denmark: Department of Computer Science, Aalborg University.Google Scholar
Nauta, M., Hill, A., Rosenquist, H., Brynestad, S., Fetsch, A., Van Der Logt, P., Fazil, A., Christensen, B., Katsma, E., Borck, B. & Havelaar, A. (2009). A comparison of risk assessments on Campylobacter in broiler meat. International Journal of Food Microbiology 129, 107123.Google Scholar
Nielsen, T. D. & Jensen, F. V. (2003). Sensitivity analysis in influence diagrams. IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans 33, 223234.Google Scholar
Sommer, H. M. & Heuer, O. E. (2007). Statistical analysis of a risk factor study on the occurrence of Campylobacter in Danish broiler flocks. Zoonoses and Public Health 54(Suppl. 1), 143144.Google Scholar
Sommer, H. M., Heuer, O. E., Sørensen, A. I. & Madsen, M. (2013). Analysis of factors important for the occurrence of Campylobacter in Danish broiler flocks. Preventive Veterinary Medicine 111, 100111.CrossRefGoogle ScholarPubMed
Van De Giessen, A. W., Bloemberg, B. P. M., Ritmeester, W. S. & Tilburg, J. J. H. C. (1996). Epidemiological study on risk factors and risk reducing measures for Campylobacter infections in Dutch broiler flocks. Epidemiology and Infection 117, 245250.Google Scholar
Van Der Gaag, L. C., Kuijper, R., Van Geffen, Y. M. & Vermeulen, J. L. (2013). Towards uncertainty analysis of Bayesian Networks. In Proceedings of the 25th Benelux Conference on Artificial Intelligence (Eds Hindriks, K., de Weerdt, M., van Riemsdijk, B. & Warnier, M.), pp. 223230. Delft, The Netherlands: BNAIC.Google Scholar
Wingstrand, A., Neimann, J., Engberg, J., Nielsen, E. M., Gerner-Smidt, P., Wegener, H. C. & Mølbak, K. (2006). Fresh chicken as main risk factor for campylobacteriosis, Denmark. Emerging Infectious Diseases 12, 280285.Google Scholar