Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T09:01:10.205Z Has data issue: false hasContentIssue false

Effect of pH, temperature, amount of litter and storage density on ammonia emissions from stable manure

Published online by Cambridge University Press:  27 March 2009

T. Dewes
Affiliation:
Christian-Albrechts-University, Institute of Crop Science and Plant Breeding, Department of Ecological Agriculture, Holzkoppelweg 2, D-24118 Kiel, Germany

Summary

In laboratory tests using stable manure consisting of wheat straw and slurry, ammonia emission was found to have two peaks corresponding to the population dynamics of proteolytic bacteria and amino acid-degrading bacteria respectively. Cumulative ammonia emissions over 14 days were 0·8–23·2% of the initial total nitrogen (Nt) and were both abiotically and biotically induced. Changes in pH had the most significant effect on the abiotically induced ammonia emissions. After 14 days of decomposition, at pH values of 6·0 and 7·5, abiotically induced emissions remained close to the limit of detectability, whereas at pH 9·0 as much as 9·8% of the initial Nt was lost. An increase in storage pressure from 0 to 400 and 800 kp/m2 generally decreased the biotic emissions to 9·6, 2·8 and 2·3%; while increasing the amounts of litter (2·5, 5·0 and 15·0 kg straw/LAU per day) led to a decline not only in the biotic (17·1, 12·8, 3·5%) but also in the abiotic emissions (6·1, 5·5, 1·6%). Varying the temperature (20, 30 and 40 °C) resulted in biotically induced emissions of 7·9, 11·7 and 11·6%, respectively, and abiotically induced emissions of 1·1, 1·4 and 2·2% of the initial Nt. At temperatures of 30 and 40 °C, the amount of microbially digested sources of carbon available was obviously sufficient to permit almost total reincorporation of NH4+ from 4 days onwards.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al-Kanani, T., Akochi, E., MacKenzie, A. F., Alli, I. & Barrington, S. (1992). Organic and inorganic amendments to reduce ammonia losses from liquid hog manure. Journal of Environmental Quality 21, 709715.CrossRefGoogle Scholar
Buijsman, E., Maas, H. F. M. & Asman, W. A. H. (1987). Anthropogenic NH3 emissions in Europe. Atmospheric Environment 21, 10091022.CrossRefGoogle Scholar
De Man, J. C. (1983). MPN tables, corrected. European Journal of Applied Microbiology and Biotechnology 17, 301305.CrossRefGoogle Scholar
Dewes, T. (1987). Untersuchugen zur Fermentation von Rindergüacr;lle unter besonderer Berücksichtigung des Zuschlagstoffes Agriben. Thesis, University of Giessen, FRG.Google Scholar
Dewes, T. (1995). Nitrogen losses from manure heaps. Biological Agriculture and Horticulture 11, 309317.CrossRefGoogle Scholar
Edwards, J. B. & Robinson, J. B. (1969). Changes in composition of continuously aerated poultry manure with special reference to nitrogen. Proceedings of the Cornell Agricultural Waste Management Conference, thaca/New York, pp. 178184.Google Scholar
Falk, R. (1994). Entwicklung und Einsatz eines Windtunnels zur Messung der Ammoniakemission bei der Ausbringung von Flüssigmist. Thesis, University of Hohenheim, FRG.Google Scholar
Hashimoto, A. G. & Ludington, D. C. (1971). Ammonia desorption from concentrated chicken manure slurries. In Livestock Waste Management and Pollution Abatement. American Society of Agricultural Engineers, Publication No. 271. International Symposium on Livestock Wastes. St. Joseph, Michigan, pp. 117121.Google Scholar
Haslam, R. T., Hershey, R. L. & Keen, R. H. (1924). Effect of gas velocity and temperature on rate of absorption. Industrial and Engineering Chemistry 16, 12241230.CrossRefGoogle Scholar
Isermann, K. (1990). Ammoniakemissionen der Landwirtschaft als Bestandteil ihrer Stickstoffbilanz und Lösungsansätze zur hinreichenden Minderung. In Ammoniak in der Umwelt (Eds Kuratorium für Technik und Bauwesen in der Landwirtschaft & Verein Deutscher Ingenieure), pp. 1·11·76, Braunschweig, FRG.Google Scholar
Kirchmann, H. (1985). Losses, plant uptake and utilisation of manure nitrogen during a production cycle. Acta Agriatlturae Scandinavica Supplementum 24, 477.Google Scholar
Kirchmann, H. & Witter, E. (1989). Ammonia volatilization during aerobic and anaerobic manure decomposition. Plant and Soil 115, 3541.CrossRefGoogle Scholar
Köhnlein, J. & Vetter, H. (1953). Die Stalldüngerrotte beisteigender Stroheinstreu. Zeitschrift für Pflanzenernährung, Düngung und Bodenkunde 95, 5563.Google Scholar
Lehmann, B., Popp, L. & Schürzinger, H. (1993). Verfahren der Tierhaltung mit Einstreu – Anforderungen der Nutztiere an das Haltungssystem. In Umweltverträgliche Verwertung von Festmist (Eds Kuratorium für Technik und Bauwesen in der Landwirtschaft), KTBL Paper No. 182, pp. 918, Darmstadt, FRG.Google Scholar
Maiwald, K. (1938). Neuzeitliche Stallmistforschungen in ihrer praktischen Bedeutung. Der Forschungsdienst SH 11, 152165.Google Scholar
Martins, O. & Dewes, T. (1992). Loss of nitrogenous compounds during composting of animal wastes. Bioresource Technology 42, 103111.CrossRefGoogle Scholar
Mielmann, P. (1976). Gülleabbau und -umwandlung durch aerob-biologische Behandlung sowie Gülleverwertung durch Rückfütterung. Thesis, University of Bonn, FRG.Google Scholar
Muck, R. E. & Steenhuis, T. S. (1982). Nitrogen losses from manure storages. Agricultural Wastes 4, 4154.CrossRefGoogle Scholar
Niese, G. (1959). Mikrobiologische Untersuchungen zur Frage der Selbsterhitzung organischer Stoffe. Atchiv für Mikrobiologie 34, 285318.CrossRefGoogle Scholar
Poincelot, R.P. (1974). A scientific examination of the principles and practice of composting. Compost Science 15, 2431.Google Scholar
Roelofs, J. G. M. (1986). The effect of airborne sulphur and nitrogen deposition on aquatic and terrestrial heathland vegetation. Experientia 42, 372377.CrossRefGoogle Scholar
Russell, E. J. & Richards, E. H. (1917). The changes taking place during the storage of farmyard manure. Journal of Agricultural Science 8, 495563.CrossRefGoogle Scholar
Schmitt, L. (1992). N-Mineralisierung verschiedener Böden bei aerober Inkubation in Abhängigkeil von mineralischen und organischen Düngemitteln unter besonderer Berücksichtigung möglicher Priming-Effekte. Thesis, University of Giessen, FRG.Google Scholar
Schuurkes, J. A. A. R. (1986). Atmospheric ammonium sulphate deposition and its role in the acidification and nitrogen enrichment of poorly buffered aquatic systems. Experientia 42, 351357.CrossRefGoogle Scholar
Siegel, O. (1936). Experimentelle Grundlagen zur zweckmäBigsten Stallmistbereitung unter bäuerlichen Verhältnissen. Zeitschrift für Pflanzenernährung, Düngung und Bodenkunde 43, 186220.CrossRefGoogle Scholar
Tietjen, C. & Vetter, H. (1972). EinfluB von Abfällen und Ausscheidungen der tierischen Produktion auf Boden und Pflanze. Berichte über Landwirtschaft 50, 650665.Google Scholar
Tovborg-Jensen, S. & Kjaer, B. (1950). Stickstoffverluste aus Böden durch Ammoniakverdampfung bei Düngung mit schwefelsaurem Ammoniak. Zeitschrift für Pflanzenernährung, Düngung und Bodenkunde 50, 2538.Google Scholar
Van Breemen, N., Burrough, P. A., Velthorst, E. J., Van Dobben, H. F., De Wit, T., Ridder, T. B. & Reijnders, H. F. R. (1982). Soil acidification from atmospheric ammonium sulphate in forest canopy throughfall. Nature 299, 548550.CrossRefGoogle Scholar
Van Der Eerden, L. J., Van Dobben, H. F., Dueck, T. A., & Berdowski, J. M. (1990). Effects of atmospheric ammonia and ammonium on vegetation. In Ammoniak in der Umwelt (Eds Kuratorium für Technik und Bauwesen in der Landwirtschaft & Verein Deutscher Ingenieure), pp. 6·1–6·19, Braunschweig, FRG.Google Scholar
Weatherburn, M. W. (1967). Phenol-hypochlorite reaction for determination of ammonia. Analytical Chemistry 39, 971974.CrossRefGoogle Scholar