Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-21T04:18:07.234Z Has data issue: false hasContentIssue false

Effects of xylanase supplementation on feed intake, digestibility and ruminal fermentation in Rambouillet sheep

Published online by Cambridge University Press:  06 April 2016

L. H. VALLEJO
Affiliation:
Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México
A. Z. M. SALEM*
Affiliation:
Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México
L. M. CAMACHO
Affiliation:
Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Guerrero, Cd. Altamirano-Iguala, Guerrero, México
A. M. KHOLIF
Affiliation:
Dairy Science Department, National Research Centre, 33 Bohouth St. Dokki, Giza, Egypt
M. D. MARIEZCURRENA
Affiliation:
Facultad de Ciencias Agrícola, Universidad Autónoma del Estado de México, Toluca, México
M. CIPRIANO
Affiliation:
Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Guerrero, Cd. Altamirano-Iguala, Guerrero, México
M. U. ALONSO
Affiliation:
Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México
J. OLIVARES
Affiliation:
Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Guerrero, Cd. Altamirano-Iguala, Guerrero, México
S. LOPEZ
Affiliation:
Instituto de Ganadería de Montaña (IGM) CSIC-Universidad de León, Departamento de Producción Animal, Universidad de León, E-24071 León, Spain
*
*To whom all correspondence should be addressed. Email: asalem70@yahoo.com

Summary

The present study aimed to investigate the effects of adding xylanase enzyme (XY) to a basal diet containing 300 g maize stover and 700 g concentrate/kg dry matter (DM) on feed intake, ruminal fermentation, total tract and ruminal digestibility, as well as some blood parameters. Four male Rambouillet sheep (39 ± 1·8 kg body weight), with permanent rumen and duodenum cannulae were used in a 4 × 4 Latin square design. Sheep were fed a basal diet without xylanase addition (control, XY0), or with the addition of xylanase at 1 (XY1), 3 (XY3) or 6 (XY6) μl/g of diet DM for 84 days, with four 21-day experimental periods. Feed intake, digestibility and rumen fermentation parameters were determined on days 16–21 in each experimental period, and the apparent ruminal neutral detergent fibre (NDF) digestibility was determined on days 16 and 17. Treatments XY1 and XY3 increased feed intake, whereas digestibility was increased with XY6. Ruminal NDF digestibility increased when sheep were fed diets treated with xylanase. Ruminal pH, ammonia-N and acetic acid increased with xylanase treated diets. Propionic acid concentration increased with diet XY1 at 3 h post-feeding, but after 9 h post-feeding its concentration decreased in the rumen of sheep fed xylanase treated diets. Xylanase had no effect on blood urea, phosphorus and triglycerides. Addition of xylanase at 6 µl/g DM in a diet containing 300 g maize stover and 700 g concentrate/kg DM and fed to Rambouillet sheep improved feed digestibility and ruminal fermentation without affecting blood parameters.

Type
Animal Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdel-Aziz, N. A., Salem, A. Z. M., El-Adawy, M. M., Camacho, L. M., Kholif, A. E., Elghandour, M. M. Y. & Borhami, B. E. (2015). Biological treatments as a mean to improve feed utilization in agriculture animals – an overview. Journal of Integrative Agriculture 14, 534543.Google Scholar
Almaraz, I., González, S. S., Pinos-Rodríguez, J. M. & Miranda, L. A. (2010). Effects of exogenous fibrolytic enzymes on in sacco and in vitro degradation of diets and on growth performance. Italian Journal of Animal Science 9, 610.Google Scholar
Alsersy, H., Salem, A. Z. M., Borhami, B. E., Olivares, J., Gado, H. M., Mariezcurrena, M. D., Yacuot, M. H., Kholif, A. E., El-Adawy, M. & Hernandez, S. R. (2015). Effect of Mediterranean saltbush (Atriplex halimus) ensilaging with two developed enzyme cocktails on feed intake, nutrient digestibility and ruminal fermentation in sheep. Animal Science Journal 86, 5158.CrossRefGoogle ScholarPubMed
AOAC (1997). Official Methods of Analysis of the Association of Official Analytical Chemist, Vol. 1, 16th edn, Washington, DC: Association of Official Analytical Chemists.Google Scholar
Beauchemin, K. A., Colombatto, D., Morgavi, D. P. & Yang, Y. Z. (2003). Use of exogenous fibrolytic enzymes to improve feed utilization by ruminants. Journal of Animal Science 81, (E Suppl.) 2, E37E47.Google Scholar
Boyd, J. W. (1984). The interpretation of serum biochemistry test results in domestic animals. Veterinary Clinical Pathology 13, 714.Google Scholar
Dean, D. B., Staples, C. R., Littell, R. C., Kim, S. C. & Adesogan, A. T. (2013). Effect of method of adding a fibrolytic enzyme to dairy cow diets on feed intake digestibility, milk production, ruminal fermentation, and blood metabolites. Animal Nutrition and Feed Technology 13, 337353.Google Scholar
Elghandour, M. M. Y., Vázquez Chagoyán, J. C., Salem, A. Z. M., Kholif, A. E., Martínez Castañeda, J. S., Camacho, L. M. & Cerrillo-Soto, M. A. (2014). Effects of Saccharomyces cerevisiae at direct addition or pre-incubation on in vitro gas production kinetics and degradability of four fibrous feeds. Italian Journal of Animal Science 13, 295301.Google Scholar
Elwakeel, E. A., Titgemeyer, E. C., Johnson, B. J., Armendariz, C. K. & Shirley, J. E. (2007). Fibrolytic enzymes to increase the nutritive value of dairy feedstuffs. Journal of Dairy Science 90, 52265236.Google Scholar
Erwin, E. S., Marco, G. J. & Emery, E. M. (1961). Volatile fatty acid analysis of blood and rumen fluid by gas chromatography. Journal of Dairy Science 44, 17681771.CrossRefGoogle Scholar
Gado, H. M., Salem, A. Z. M., Robinson, P. H. & Hassan, M. (2009). Influence of exogenous enzymes on nutrient digestibility, extent of ruminal fermentation as well as milk production and composition in dairy cows. Animal Feed Science and Technology 154, 3646.Google Scholar
Giraldo, L. A., Tejido, M. L., Ranilla, M. J., Ramos, S. & Carro, M. D. (2008). Influence of direct-fed fibrolytic enzymes on diet digestibility and ruminal activity in sheep fed a grass hay-based diet. Journal of Animal Science 86, 16171623.Google Scholar
Hristov, A. N., McAllister, T. A. & Cheng, K.-J. (1998). Stability of exogenous polysaccharide-degrading enzymes in the rumen. Animal Feed Science and Technology 76, 161168.Google Scholar
Hristov, A. N., McAllister, T. A. & Cheng, K.-J. (2000). Intraruminal supplementation with increasing levels of exogenous polysaccharide-degrading enzymes: effects on nutrient digestion in cattle fed a barley grain diet. Journal of Animal Science 78, 477487.Google Scholar
Jackson, S. & Nicolson, S. W. (2002). Xylose as a nectar sugar: from biochemistry to ecology. Comparative Biochemistry and Physiology Part B. Biochemistry and Molecular Biology 131, 613620.Google Scholar
Jalilvand, G., Odongo, N. E., Lopez, S., Naserian, A., Valizadeh, R., Shahrodi, E., Kebreab, E., France, J. (2008). Effects of different levels of an enzyme mixture on in vitro gas production parameters of contrasting forages. Animal Feed Science and Technology 146, 289301.CrossRefGoogle Scholar
Khattab, H. M., Gado, H. M., Kholif, A. E., Mansour, A. M. & Kholif, A. M. (2011). The potential of feeding goats sun dried rumen contents with or without bacterial inoculums as replacement for berseem clover and the effects on milk production and animal health. International Journal of Dairy Science 6, 267277.CrossRefGoogle Scholar
Kholif, A. E., Gouda, G. A., Morsy, T. A., Salem, A. Z. M., Lopez, S. & Kholif, A. M. (2015). Moringa oleifera leaf meal as a protein source in lactating goat's diets: feed intake, digestibility, ruminal fermentation, milk yield and composition, and its fatty acids profile. Small Ruminant Research 129, 129137.CrossRefGoogle Scholar
Kholif, A. M. & Aziz, H. A. (2014). Influence of feeding cellulytic enzymes on performance, digestibility and ruminal fermentation in goats. Animal Nutrition and Feed Technology 14, 121136.Google Scholar
Kozloski, G. V., Stefanello, C. M., Mesquita, F. R., Alves, T. P., Ribeiro Filho, H. M. N., Almeida, J. G. R. & Moraes Genro, T. C. (2014). Technical note: evaluation of markers for estimating duodenal digesta flow and ruminal digestibility: acid detergent fiber, sulfuric acid detergent lignin, and n-alkanes. Journal of Dairy Science 97, 17301735.Google Scholar
Kumar, N., Singh, U. B. & Verma, D. N. (1981). Effect of different levels of dietary protein and energy on growth of male buffalo calves. Indian Journal of Animal Science 51, 513517.Google Scholar
Lin, Y., Vonk, R. J., Slooff, M. J. H., Kuipers, F. & Smit, M. J. (1995). Differences in propionate-induced inhibition of cholesterol and triacylglycerol synthesis between human and rat hepatocytes in primary culture. British Journal of Nutrition 74, 197207.Google Scholar
Mao, H. L., Wu, C. H., Wang, J. K. & Liu, J. X. (2013). Synergistic effect of cellulase and xylanase on in vitro rumen fermentation and microbial population with rice straw as substrate. Animal Nutrition and Feed Technology 13, 477487.Google Scholar
McCullough, H. (1967). The determination of ammonia in whole blood by direct colorimetric method. Clinica Chimica Acta 17, 297304.Google Scholar
Morgavi, D. P., Beauchemin, K. A., Nsereko, V. L., Rode, L. M., McAllister, T. A. & Wang, Y. (2004). Trichoderma enzymes promote Fibrobacter succinogenes S85 adhesion to, and degradation of, complex substrates but not pure cellulose. Journal of the Science of Food and Agriculture 84, 10831090.Google Scholar
Morsy, T. A., Kholif, A. E., Kholif, S. M., Kholif, A. M., Sun, X. & Salem, A. Z. M. (2016). Effects of two enzyme feed additives on digestion and milk production in lactating Egyptian buffaloes. Annals of Animal Science 16, 209222.Google Scholar
NRC (1985). Nutrient Requirements of Sheep, 6th edn, Washington, DC: National Academy Press.Google Scholar
Ørskov, E. R. & Ryle, R. (1990). Energy Nutrition in Ruminants. New York: Elsevier Science Publishers.Google Scholar
Robyt, J. F. & Whelan, W. J. (1972). Reducing value methods for maltodextrins. 1. Chain-length dependence of alkaline 3,5-dinitrosalicylate and chain length independence of alkaline copper. Analytical Biochemistry 45, 510516.Google Scholar
Rojo, R., Kholif, A. E., Salem, A. Z. M., Elghandour, M. M. Y., Odongo, N. E., Montes De Oca, R., Rivero, N. & Alonso, M. U. (2015). Influence of cellulase addition to dairy goat diets on digestion and fermentation, milk production and fatty acid content. Journal of Agricultural Science, Cambridge 153, 15141523.Google Scholar
Salem, A. Z. M., Gado, H. M., Colombatto, D. & Elghandour, M. M. Y. (2013). Effects of exogenous enzymes on nutrient digestibility, ruminal fermentation and growth performance in beef steers. Livestock Science 154, 6973.Google Scholar
Salem, A. Z. M., Kholif, A. E., Elghandour, M. M. Y., Buendía, G., Mariezcurrena, M. D., Hernandez, S. R. & Camacho, L. M. (2014). Influence of oral administration of Salix babylonica extract on milk production and composition in dairy cows. Italian Journal of Animal Science 13, 1014.Google Scholar
Salem, A. Z. M., Ammar, H., Kholif, A. E., Elghandour, M. M. Y. & Ortiz, L. B. (2015 a). Effect of glucoamylase enzyme extract on in vitro gas production and degradability of two diets with 25% of corn or sorghum grains. Indian Journal of Animal Science 85, 183188.Google Scholar
Salem, A. Z. M., Alsersy, H., Camacho, L. M., El-Adawy, M. M., Elghandour, M. M. Y., Kholif, A. E., Rivero, N., Alonso, M. U. & Zaragoza, A. (2015 b). Feed intake, nutrient digestibility, nitrogen utilization, and ruminal fermentation activities in sheep fed Atriplex halimus ensiled with three developed enzyme cocktails. Czech Journal of Animal Science 60, 185194.CrossRefGoogle Scholar
SAS Institute (2006). SAS 9·0 User's Guide: Statistics, version 9.0. Cary, NC: SAS Institute.Google Scholar
Satter, L. D. & Slyter, L. L. (1974). Effect of ammonia concentration on rumen microbial protein production in vitro . British Journal of Nutrition 32, 199208.Google Scholar
Soltan, Y. A., Abdalla, A. L., Silva, L. R. F., Natel, A. S., Morsy, A. S. & Louvandini, H. (2013). Response of different tropical pasture grass species to treatments with fibrolytic enzymes in terms of in vitro ruminal nutrient degradation and methanogenesis. Animal Nutrition and Feed Technology 13, 551568.Google Scholar
Sung, H. G., Kobayashi, Y., Chang, J., Ha, A., Hwang, I. H. & Ha, J. K. (2007). Low ruminal pH reduces dietary fiber digestion via reduced microbial attachment. Asian-Australasian Journal of Animal Sciences 20, 200207.Google Scholar
Togtokhbayar, N., Cerrillo, M. A., Rodríguez, G. B., Elghandour, M. M. M. Y., Salem, A. Z. M., Urankhaich, C., Jigjidpurev, S., Odongo, N. E. & Kholif, A. E. (2015). Effect of exogenous xylanase on rumen in vitro gas production and degradability of wheat straw. Animal Science Journal 86, 765771.CrossRefGoogle ScholarPubMed
Valdes, K. I., Salem, A. Z. M., Lopez, S., Alonso, M. U., Rivero, N., Elghandour, M. M. Y., Domínguez, I. A., Ronquillo, M. G. & Kholif, A. E. (2015). Influence of exogenous enzymes in presence of Salix babylonica extract on digestibility, microbial protein synthesis and performance of lambs fed maize silage. Journal of Agricultural Science, Cambridge 153, 732742.Google Scholar
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fibre, neutral detergent fibre, and non-starch carbohydrates in relation to animal nutrition. Journal of Dairy Science 74, 35833597.Google Scholar
Wang, Y., McAllister, T. A., Rode, L. M., Beauchemin, K. A., Morgavi, D. P., Nsereko, V. L., Iwaasa, A. D. & Yang, W. (2001). Effects of an exogenous enzyme preparation on microbial protein synthesis, enzyme activity and attachment to feed in the rumen simulation technique (Rusitec). British Journal of Nutrition 85, 325332.CrossRefGoogle ScholarPubMed
Yang, W. Z., Beauchemin, K. A. & Rode, L. M. (1999). Effects of an enzyme feed additive on extent of digestion and milk production of lactating dairy cows. Journal of Dairy Science 82, 391403.Google Scholar