Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-16T19:58:11.678Z Has data issue: false hasContentIssue false

Genetic diversity assessment of extra-early maturing yellow maize inbreds and hybrid performance in Striga-infested and Striga-free environments

Published online by Cambridge University Press:  21 August 2012

I. C. AKAOGU
Affiliation:
International Institute of Tropical Agriculture, Ibadan, Nigeria, c/o L.W. Lambourne & Co., Carolyn House, 26 Dingwall Road, Croydon CR93EEUK Department of Agricultural Biotechnology and Bioresources, National Biotechnology Development Agency, Abuja, Nigeria
B. BADU-APRAKU*
Affiliation:
International Institute of Tropical Agriculture, Ibadan, Nigeria, c/o L.W. Lambourne & Co., Carolyn House, 26 Dingwall Road, Croydon CR93EEUK
V. O. ADETIMIRIN
Affiliation:
Department of Agronomy, University of Ibadan, Ibadan Oyo State, Nigeria
I. VROH-BI
Affiliation:
International Institute of Tropical Agriculture, Ibadan, Nigeria, c/o L.W. Lambourne & Co., Carolyn House, 26 Dingwall Road, Croydon CR93EEUK
M. OYEKUNLE
Affiliation:
International Institute of Tropical Agriculture, Ibadan, Nigeria, c/o L.W. Lambourne & Co., Carolyn House, 26 Dingwall Road, Croydon CR93EEUK
R. O. AKINWALE
Affiliation:
Department of Crop Production and Protection, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
*
*To whom all correspondence should be addressed. Email: b.badu-apraku@cgiar.org

Summary

Maize (Zea mays L.), a major staple food crop in West and Central Africa (WCA), is adapted to all agro-ecologies in the sub-region. Its production in the sub-region is greatly constrained by infestation of Striga hermonthica (Del.) Benth. The performance and stability of the extra-early maturing hybrids, which are particularly adapted to areas with short growing seasons, were assessed under Striga-infested and Striga-free conditions. A total of 120 extra-early hybrids and an open-pollinated variety (OPV) 2008 Syn EE-Y DT STR used as a control were evaluated at two locations each under Striga-infested (Mokwa and Abuja) and Striga-free (Ikenne and Mokwa) conditions in 2010/11. The Striga-resistant hybrids were characterized by higher grain yield, shorter anthesis–silking interval (ASI), better ear aspect, higher numbers of ears per plant (EPP), lower Striga damage rating, and lower number of emerged Striga plants at 8 and 10 weeks after planting (WAP) compared with the susceptible inbreds. Under Striga infestation, mean grain yield ranged from 0·71 to 3·18 t/ha and 1·19 to 3·94 t/ha under Striga-free conditions. The highest yielding hybrid, TZEEI 83×TZEEI 79, out-yielded the OPV control by 157% under Striga infestation. The hybrids TZEEI 83×TZEEI 79 and TZEEI 67×TZEEI 63 were the highest yielding under both Striga-infested and Striga-free conditions. The genotype main effect plus genotype×environment interaction (GGE) biplot analysis identified TZEEI 88×TZEEI 79 and TZEEI 81×TZEEI 95 as the ideal hybrids across research environments. Twenty-three pairs of simple sequence repeat (SSR) markers were used to assess the genetic diversity among the inbred lines. The correlations between the SSR-based genetic distance (GD) estimates of parental lines and the means observed in F1 hybrid under Striga infestation and optimum growing conditions were not significant for grain yield and other traits except ASI under optimum conditions. Grain yield of inbreds was not significantly correlated with that of F1 hybrids. However, a significant correlation existed between F1 hybrid grain yield and heterosis under Striga infestation (r=0·72, P<0·01). These hybrids have the potential for increasing maize production in Striga endemic areas in WCA.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adetimirin, V. O., Aken'ova, M. E. & Kim, S. K. (2000). Effects of Striga hermonthica on yield components in maize. Journal of Agricultural Science, Cambridge 135, 185191.CrossRefGoogle Scholar
Ajmone-Marsan, P., Castiglioni, P., Fusari, F., Kuiper, M. & Motto, M. (1998). Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. Theoretical and Applied Genetics 96, 219227.CrossRefGoogle Scholar
Badu-Apraku, B. (2010). Effects of recurrent selection for grain yield and Striga resistance in an extra-early maize population. Crop Science 50, 17351743.CrossRefGoogle Scholar
Badu-Apraku, B. & Akinwale, R. O. (2011). Cultivar evaluation and trait analysis of tropical early maturing maize under Striga-infested and Striga-free environments. Field Crops Research 121, 186194.CrossRefGoogle Scholar
Badu-Apraku, B., Fakorede, M. A. B., Menkir, A., Kamara, A. Y., Akanvou, L. & Chabi, Y. (2004). Response of early maturing maize to multiple stresses in the Guinea savanna of West and Central Africa. Journal of Genetics and Breeding 58, 119130.Google Scholar
Badu-Apraku, B., Menkir, A., Fakorede, M. A. B., Fontem Lum, A. & Obeng-Antwi, K. (2006). Multivariate analyses of the genetic diversity of forty-seven Striga resistant tropical early maturing maize inbred lines. Maydica 51, 551559.Google Scholar
Badu-Apraku, B., Fakorede, M. A. B. & Fontem Lum, A. (2007). Evaluation of experimental varieties from recurrent selection for Striga resistance in two extra-early maize populations in the savannas of West and Central Africa. Experimental Agriculture 43, 183200.CrossRefGoogle Scholar
Badu-Apraku, B., Fontem Lum, A., Fakorede, M. A. B., Menkir, A., Chabi, Y., Thé, C., Abdulai, M., Jacob, S. & Agbaje, S. (2008). Performance of early maize cultivars derived from recurrent selection for grain yield and Striga resistance. Crop Science 48, 99112.CrossRefGoogle Scholar
Badu-Apraku, B., Fakorede, M. A. B., Lum, A. F. & Akinwale, R. (2009). Improvement of yield and other traits of extra-early maize under stress and nonstress environments. Agronomy Journal 101, 381389.CrossRefGoogle Scholar
Badu-Apraku, B., Oyekunle, M., Akinwale, R. O. & Fontem Lum, A. (2011). Combining ability of early-maturing white maize inbreds under stress and nonstress environments. Agronomy Journal 103, 544557.CrossRefGoogle Scholar
Bebawi, F. F., Eplee, R. E., Harris, C. E. & Norris, R. S. (1984). Longevity of witchweed (Striga asiatica) seed. Weed Science 32, 494497.CrossRefGoogle Scholar
Benchimol, L. L., De Souza, C. L. Jr, Garcia, A. A. F., Kono, P. M. S., Mangolin, C. A., Barbosa, A. M. M., Coelho, A. S. G. & De Souza, A. P. (2008). Genetic diversity in tropical maize inbred lines: heterotic group assignment and hybrid performance determined by RFLP markers. Plant Breeding 119, 491496.CrossRefGoogle Scholar
Bernardo, R. (1992). Relationship between single-cross performance and molecular marker heterozygosity. Theoretical and Applied Genetics 83, 628634.CrossRefGoogle ScholarPubMed
Betran, F. J., Banziger, M. & Beck, D. L. (1997). Relationship between line and topcross performance under drought and nonstressed conditions in tropical maize. In Developing Drought- and Low-N Tolerant Maize. Proceedings of a Symposium, 25–29 March 1996, CIMMYT, El Batán, Mexico (Eds Edmeades, G. O., Banziger, M., Mickelson, H. R. & Peña-Valdivia, C. B.), pp. 383386. El Batán, Mexico, D.F.: CIMMYT.Google Scholar
Betran, F. J., Beck, D., Banziger, M. & Edmeades, G. O. (2003 a). Genetic analysis of inbred and hybrid yield under stress and nonstress environments in tropical maize. Crop Science 43, 807817.CrossRefGoogle Scholar
Betran, F. J., Ribaut, J. M., Beck, D. & Gonzalez De Leon, D. (2003 b). Genetic diversity, specific combining ability, and heterosis in tropical maize inbreds under stress and nonstress environments. Crop Science 43, 797806.CrossRefGoogle Scholar
Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA minipreparation: version II. Plant Molecular Biology Reporter 1, 1921.CrossRefGoogle Scholar
Devries, J. (2000). The inheritance of Striga reactions in maize. In Breeding for Striga Resistance in Cereals: Proceedings of the International Workshop Organized by IITA, 18–20 August 1999, Ibadan, Nigeria (Eds Haussmann, B. J. G., Hess, D. E., Koyama, M. L., Grivet, L., Rattunde, H. F. W. & Geiger, H. H.), pp. 7384. Weikersheim, Germany: Magraf Verlag.Google Scholar
Enoki, H., Sato, H. & Koinuma, K. (2002). SSR analysis of genetic diversity among maize inbred lines adapted to cold regions of Japan. Theoretical and Applied Genetics 104, 12701277.CrossRefGoogle ScholarPubMed
Godshalk, E. B., Lee, M. & Lamkey, K. R. (1990). Relationship of restriction fragment length polymorphisms to single cross hybrid performance of maize. Theoretical and Applied Genetics 80, 273280.CrossRefGoogle ScholarPubMed
Hallauer, A. R. & Miranda, J. B. (1988). Quantitative Genetics and Maize Breeding. Ames: Iowa State University Press.Google Scholar
Kim, S. K. (1991). Breeding maize for Striga tolerance and the development of a field infestation technique. In Combating Striga in Africa: Proceedings of an International Workshop Organised by IITA, ICRISAT and IDRC, 22–24 August 1988 (Ed. Kim, S. K.), pp. 96108. Ibadan, Nigeria: IITA.Google Scholar
Kim, S. K. (1994). Genetics of maize tolerance to Striga hermonthica. Crop Science 34, 900907.CrossRefGoogle Scholar
Kim, S. K. & Winslow, M. D. (1991). Progress in breeding maize for Striga tolerance/resistance at IITA. In Proceedings of the Fifth International Symposium on Parasitic Weeds, 24–30 June 1991, Nairobi, Kenya (Eds Ransom, J. K., Musselman, L. J., Worsham, A. D. & Parker, C.), pp. 494499. El Batán, Mexico, D. F.: CIMMYT.Google Scholar
Kim, S. K. & Adetimirin, V. O. (1995). Overview of tolerance and resistance maize hybrids to Striga hermonthica and Striga asiatica. In Maize Research for Stress Environments. Proceedings of the Fourth Eastern and Southern Africa Regional Maize Conference, Harare, Zimbabwe, 24 March–1 April 1994 (Eds Jewell, D. C., Waddington, S. R., Ransom, J. K. & Pixley, K. V.), pp. 255262. El Batán, Mexico, D.F.: CIMMYT.Google Scholar
Kim, S. K., Adetimirin, V. O., The, C. & Dossou, R. (2002). Yield losses in maize due to Striga hermonthica in West and Central Africa. International Journal of Pest Management 48, 211217.CrossRefGoogle Scholar
Kroschel, J. (1999). Analysis of the Striga problem: The first step towards future joint action. In Joint Action to Control Striga in Africa: Advances in Parasitic Weed Control at on Farm Level. Vol. 1 (Eds Kroschel, J., Mercher-Quarshie, H. & Sauerborn, J.), pp. 326. Weikersheim, Germany: Margraf Verlag.Google Scholar
Lafitte, H. R. & Edmeades, G. O. (1995). Association between traits in tropical maize inbred lines and their hybrids under high and low soil nitrogen. Maydica 40, 259267.Google Scholar
Lagoke, S. T. O. (1998). Pan African Striga control network. In Proceedings of the Integrated Pest Management Communications Workshop: Eastern and Southern Africa, Nairobi, Kenya, 1–6 March 1998 (Ed. Lagoke, S. T. O.), pp. 6569. Nairobi, Kenya: ICIPE.Google Scholar
Lagoke, S. T. O., Parkinson, V. & Agunbiade, R. M. (1991). Parasitic weeds and control methods in Africa. In Combating Striga in Africa. Proceedings of the International Workshop Organized by IITA, ICRISAT and IDRC, 22–24 August 1998, Ibadan, Nigeria (Ed. Kim, S. K.), pp. 315. Ibadan, Nigeria: IITA.Google Scholar
Lee, M., Godshalk, E. B., Lamkey, K. R. & Woodman, W. W. (1989). Association of restriction fragment length polymorphisms among maize inbreds with agronomic performance of their crosses. Crop Science 29, 10671071.CrossRefGoogle Scholar
Lübberstedt, T., Melchinger, A. E., DUβLE, C., Vuylsteke, M. & Kuiper, M. (2000). Relationships among early European maize inbreds: IV. Genetic diversity revealed with AFLP markers and comparison with RFLP, RAPD, and pedigree data. Crop Science 40, 783791.CrossRefGoogle Scholar
Lu, H., & Bernardo, R. (2001). Molecular marker diversity among current and historical maize inbreds. Theoretical and Applied Genetics 103, 613617.CrossRefGoogle Scholar
Makumbi, D., Betrán, J. F., Bänziger, M. & Ribaut, J-M. (2011). Combining ability, heterosis and genetic diversity in tropical maize (Zea mays L.) under stress and non-stress conditions. Euphytica 180, 143162.CrossRefGoogle Scholar
Melchinger, A. E. (1999). Genetic diversity and heterosis. In The Genetics and Exploitation of Heterosis in Crops (Eds Coors, J. G. & Pandey, S.), pp. 99118. Madison, WI: ASA and CSSA.Google Scholar
Menkir, A., Badu-Apraku, B., Thé, C. & Adepoju, A. (2003). Evaluation of heterotic patterns of IITA's lowland white maize inbred lines. Maydica 48, 161170.Google Scholar
Menkir, A. & Kling, J. G. (2007). Response to recurrent selection for resistance to Striga hermonthica (Del.) Benth in a tropical maize population. Crop Science 47, 674684.CrossRefGoogle Scholar
Menkir, A., Adetimirin, V. O., Yallou, C. G. & Gedil, M. (2010). Relationship of genetic diversity of inbred lines with different reactions to Striga hermonthica (Del.) Benth and the performance of their crosses. Crop Science 50, 602611.CrossRefGoogle Scholar
Moll, R. H., Lonnquist, J. H., Velez Fortuno, J. & Johnson, E. C. (1965). The relationship of heterosis and genetic divergence in maize. Genetics 52, 139144.CrossRefGoogle ScholarPubMed
Nei, M. & Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences USA 76, 52695273.CrossRefGoogle ScholarPubMed
Paterniani, E. & Lonnquist, J. H. (1963). Heterosis in interracial crosses of corn (Zea mays L.). Crop Science 3, 504507.CrossRefGoogle Scholar
Pejic, I., Ajmone-Marsoan, P., Morgante, M., Kozumplick, V., Castiglioni, P., Taramino, G. & Motto, M. (1998). Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theoretical and Applied Genetics 97, 12481255.CrossRefGoogle Scholar
SAS Institute. (2001). Statistical Analysis Software (SAS) User's Guide. Version 9.2. Cary, NC: SAS Institute Inc.Google Scholar
Senior, M. L., Murphy, J. P., Goodman, M. M. & Stuber, C. W. (1998). Utility of SSRs for determining genetic similarities and relationships in maize using an agarose gel system. Crop Science 38, 10881098.CrossRefGoogle Scholar
Shieh, G. J. & Thseng, F. S. (2006). Genetic diversity of Tainanwhite maize inbred lines and prediction of single cross hybrid performance using RAPD markers. Euphytica 124, 307313.CrossRefGoogle Scholar
Smith, O. S., Smith, J. S. C., Bowen, S. L., Tenborg, R. A. & Wall, S. J. (1990). Similarities among a group of elite maize inbreds as measured by pedigree, F1 grain yield, grain yield, heterosis, and RFLPs. Theoretical and Applied Genetics 80, 833840.CrossRefGoogle ScholarPubMed
Stewart, G. R., Press, M. C., Graves, J. D., Nour, J. J. & Wylde, A. (1991). A physiological characterization of the host-parasite association between Sorghum bicolour and Striga hermonthica and its implication for Striga control. In Combating Striga in Africa. Proceedings of the International Workshop Organised by IITA, ICRISAT and IDRC, 22–24 August 1988, Ibadan, Nigeria (Ed. Kim, S. K.), pp. 4854. Ibadan, Nigeria: IITA.Google Scholar
Vroh Bi, I., Mcmullen, M. D., Sanchez-Villeda, H., Schroeder, S., Gardiner, J., Polacco, M., Soderlund, C., Wing, R., Fang, Z., Coe, E. H. Jr (2006). Single nucleotide polymorphisms and insertion-deletions for genetic markers and anchoring the maize FingerPrint Contig physical map. Crop Science 46, 1221.CrossRefGoogle Scholar
Yallou, C. G., Menkir, A., Adetimirin, V. O. & Kling, J. G. (2009). Combining ability of maize inbred lines containing genes from Zea diploperennis for resistance to Striga hermonthica (Del.) Benth. Plant Breeding 128, 143148.CrossRefGoogle Scholar
Yan, W. (2001). GGE biplot: A Windows application for graphical analysis of multi-environment trial data and other types of two-way data. Agronomy Journal 93, 11111118.CrossRefGoogle Scholar
Yan, W., Fregeau-Reid, J., Pageau, D., Martin, R., Mitchell- Fetch, J., Etienne, M., Rowsell, J., Scott, P., Price, M., De Haan, B., Cummiskey, A., Lajeunesse, J., Durand, J. & Sparry, E. (2010). Identifying essential test locations for oat breeding in eastern Canada. Crop Science 50, 505515.CrossRefGoogle Scholar
Yan, W., Hunt, L. A., Sheng, Q. & Szlavnics, Z. (2000). Cultivar evaluation and mega-environment investigation based on GGE biplot. Crop Science 40, 597605.CrossRefGoogle Scholar