Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T23:15:20.795Z Has data issue: false hasContentIssue false

The importance of the gestation period for welfare of lambs: maternal stressors and lamb vigour and wellbeing

Published online by Cambridge University Press:  07 August 2014

J. A. ROOKE*
Affiliation:
Beef and Sheep Research Centre, Future Farming Systems, SRUC, West Mains Road, Edinburgh EH9 3JG, UK
G. ARNOTT
Affiliation:
Animal Behaviour and Welfare, Animal and Veterinary Sciences Research Group, SRUC, West Mains Road, Edinburgh EH9 3JG, UK School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
C. M. DWYER
Affiliation:
Animal Behaviour and Welfare, Animal and Veterinary Sciences Research Group, SRUC, West Mains Road, Edinburgh EH9 3JG, UK
K. M. D. RUTHERFORD
Affiliation:
Animal Behaviour and Welfare, Animal and Veterinary Sciences Research Group, SRUC, West Mains Road, Edinburgh EH9 3JG, UK
*
*To whom all correspondence should be addressed. Email: john.rooke@sruc.ac.uk

Summary

The prenatal period is of critical importance in defining how individuals respond to their environment throughout life. Stress experienced by pregnant females has been shown to have detrimental effects on offspring behaviour, health and productivity. The sheep has been used extensively as a model species to inform human studies. However, in the farmed environment, the consequences for the lamb of the imposition of prenatal stresses upon the ewe have received much less attention. The stressors that pregnant ewes are most frequently exposed to include sub-optimal nutrition and those related to housing, husbandry and environment which may be either acute or chronic. A systematic review of the literature was adopted to identify material which had production-relevant maternal stressors and lamb outcomes. The current review focussed upon the lamb up to weaning around the age of 100 days and the results clearly demonstrate that stressors imposed upon the ewe have implications for offspring welfare and performance. Maternal under-nutrition (UN) in the last third of pregnancy consistently impaired lamb birth-weight and subsequent vigour and performance, while earlier UN had a variable effect on performance. Feeding the ewe above requirements did not have positive effects on lamb performance and welfare. Social and husbandry stressors such as transport, shearing, mixing and physiological treatments designed to mimic acute stress which would be considered disadvantageous for the ewe had positive or neutral effects for the lamb, highlighting a potential conflict between the welfare of the ewe and her lamb. This review also identified considerable gaps in knowledge, particularly in respect of the impact of disease upon the ewe during pregnancy and interactions between different stressors and the responses of ewe and lamb.

Type
Animal Review
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Annett, R. W., Carson, A. F. & Dawson, L. E. R. (2008). Effects of digestible undegradable protein (DUP) supply and fish oil supplementation of ewes during late pregnancy on colostrum production and lamb output. Animal Feed Science and Technology 146, 270288.Google Scholar
Annett, R. W., Dawson, L. E. R., Edgar, H. & Carson, A. F. (2009). Effects of source and level of fish oil supplementation in late pregnancy on feed intake, colostrum production and lamb output of ewes. Animal Feed Science and Technology 154, 169182.CrossRefGoogle Scholar
Arnott, G., Roberts, D., Rooke, J. A., Turner, S. P., Lawrence, A. B. & Rutherford, K. M. D. (2012). BOARD INVITED REVIEW: the importance of the gestation period for welfare of calves: maternal stressors and difficult births. Journal of Animal Science 90, 50215034.CrossRefGoogle ScholarPubMed
Banchero, G., Vazquez, A., Montossi, F., De Barbieri, I. & Quintans, G. (2010). Pre-partum shearing of ewes under pastoral conditions improves the early vigour of both single and twin lambs. Animal Production Science 50, 309314.CrossRefGoogle Scholar
Banchero, G. E., Quintans, G., Lindsay, D. R. & Milton, J. T. B. (2009). A pre-partum lift in ewe nutrition from a high-energy lick or maize or by grazing Lotus uliginosus pasture, increases colostrum production and lamb survival. Animal 3, 11831188.CrossRefGoogle ScholarPubMed
Barker, D. J. P., Osmond, C., Golding, J., Kuh, D. & Wadsworth, M. E. J. (1989). Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. British Medical Journal 298, 564567.CrossRefGoogle ScholarPubMed
Barker, D. J. P., Eriksson, J. G., Forsen, T. & Osmond, C. (2002). Fetal origins of adult disease: strength of effects and biological basis. International Journal of Epidemiology 31, 12351239.Google Scholar
Bloomfield, F. H., Oliver, M. H., Giannoulias, C. D., Gluckman, P. D., Harding, J. E. & Challis, J. R. G. (2003). Brief undernutrition in late-gestation sheep programs the hypothalamic-pituitary-adrenal axis in adult offspring. Endocrinology 144, 29332940.CrossRefGoogle ScholarPubMed
Bøe, K., Nedkvitne, J. J. & Austbø, D. (1991). The effect of different housing systems and feeding regimes on the performance and rectal temperature of sheep. Animal Production 53, 331337.Google Scholar
Boland, T. M., Brophy, P. O., Callan, J. J., Quinn, P. J., Nowakowski, P. & Crosby, T. F. (2005 a). The effects of mineral supplementation to ewes in late pregnancy on colostrum yield and immunoglobulin G absorption in their lambs. Livestock Production Science 97, 141150.CrossRefGoogle Scholar
Boland, T. M., Guinan, M., Brophy, P. O., Callan, J. J., Quinn, P. J., Nowakowski, P. & Crosby, T. F. (2005 b). The effect of varying levels of mineral and iodine supplementation to ewes during late pregnancy on serum immunoglobulin G concentrations in their progeny. Animal Science 80, 209218.CrossRefGoogle Scholar
Boland, T. M., Callan, J. J., Brophy, P. O., Quinn, P. J. & Crosby, T. F. (2006). Lamb serum vitamin E and immunoglobulin G concentrations in response to various maternal mineral and iodine supplementation regimens. Animal Science 82, 319325.Google Scholar
Boland, T. M., Hayes, L., Sweeney, T., Callan, J. J., Baird, A. W., Keely, S. & Crosby, T. F. (2008). The effects of cobalt and iodine supplementation of the pregnant ewe diet on immunoglobulin G, vitamin E, T-3 and T-4 levels in the progeny. Animal 2, 197206.CrossRefGoogle Scholar
Burt, B. E., Hess, B. W., Nathanielsz, P. W. & Ford, S. P. (2007). Flock differences in the impact of maternal dietary restriction on offspring growth and glucose tolerance in female offspring. Society for Reproduction and Fertility Supplement 64, 411424.Google Scholar
Cal-Pereyra, L., Benech, A., Da Silva, S., Martín, A. & González-Montaña, J. (2011). Energy metabolism in shorn and unshorn pregnant ewes under two different nutritional planes. Effects on the energetic storage of their lambs. Archivos de Medicina Veterinaria 43, 277285.CrossRefGoogle Scholar
Capper, J. L., Wilkinson, R. G., Kasapidou, E., Pattinson, S. E., Mackenzie, A. M. & Sinclair, L. A. (2005). The effect of dietary vitamin E and fatty acid supplementation of pregnant and lactating ewes on placental and mammary transfer of vitamin E to the lamb. British Journal of Nutrition 93, 549557.Google Scholar
Capper, J. L., Wilkinson, R. G., Mackenzie, A. M. & Sinclair, L. A. (2006). Polyunsaturated fatty acid supplementation during pregnancy alters neonatal behavior in sheep. Journal of Nutrition 136, 397403.Google Scholar
Chen, C. Y., Carstens, G. E., Gilbert, C. D., Theis, C. M., Archibeque, S. L., Kurz, M. W., Slay, L. J. & Smith, S. B. (2007). Dietary supplementation of high levels of saturated and monounsaturated fatty acids to ewes during late gestation reduces thermogenesis in newborn lambs by depressing fatty acid oxidation in perirenal brown adipose tissue. Journal of Nutrition 137, 4348.Google Scholar
Corner, R. A., Kenyon, P. R., Stafford, K. J., West, D. M. & Morris, S. T. (2006 a). The effect of nutrition during pregnancy on the behaviour of adolescent ewes and their lamb(s) within 12 hrs of birth. Proceedings of the New Zealand Society of Animal Production 66, 439443.Google Scholar
Corner, R. A., Kenyon, P. R., Stafford, J. K., West, D. M. & Oliver, M. H. (2006 b). The effect of mid-pregnancy shearing or yarding stress on ewe post-natal behaviour and the birth weight and post-natal behaviour of their lambs. Livestock Science 102, 121129.Google Scholar
Corner, R. A., Kenyon, P. R., Stafford, K. J., West, D. M. & Oliver, M. H. (2007). The effect of mid-pregnancy shearing and litter size on lamb birth weight and postnatal plasma cortisol response. Small Ruminant Research 73, 115121.Google Scholar
Corner, R. A., Kenyon, P. R., Stafford, K. J., West, D. M., Lopez-Villalobos, N., Morris, S. T. & Oliver, M. H. (2008). Effect of nutrition from mid to late pregnancy on the performance of twin- and triplet-bearing ewes and their lambs. Australian Journal of Experimental Agriculture 48, 666671.Google Scholar
Corner, R. A., Kenyon, P. R., Stafford, K. J., West, D. M., Morris, S. T. & Oliver, M. H. (2010 a). The effects of pasture availability for twin- and triplet-bearing ewes in mid and late pregnancy on ewe and lamb behaviour 12 to 24 h after birth. Animal 4, 108115.CrossRefGoogle ScholarPubMed
Corner, R. A., Kenyon, P. R., Stafford, K. J., West, D. M. & Oliver, M. H. (2010 b). The effect of different types of stressors during mid- and late pregnancy on lamb weight and body size at birth. Animal 4, 20652070.Google Scholar
Crosby, T. F., Boland, T. M., Brophy, P. O., Quinn, P. J., Callan, J. J. & Joyce, D. (2004). The effects of offering mineral blocks to ewes pre-mating and in late pregnancy on block intake, pregnant ewe performance and immunoglobulin status of the progeny. Animal Science 79, 493504.Google Scholar
Dafoe, J. M., Kott, R. W., Sowell, B. F., Berardinelli, J. G., Davis, K. C. & Hatfield, P. G. (2008). Effects of supplemental safflower and vitamin E during late gestation on lamb growth, serum metabolites, and thermogenesis. Journal of Animal Science 86, 31943202.Google Scholar
De Blasio, M. J., Dodic, M., Jefferies, A. J., Moritz, K. M., Wintour, E. M. & Owens, J. A. (2007). Maternal exposure to dexamethasone or cortisol in early pregnancy differentially alters insulin secretion and glucose homeostasis in adult male sheep offspring. American Journal of Physiology: Endocrinology and Metabolism 293, E75E82.Google Scholar
Dodic, M., Abouantoun, T., O'Connor, A., Wintour, E. M. & Moritz, K. M. (2002). Programming effects of short prenatal exposure to dexamethasone in sheep. Hypertension 40, 729734.Google Scholar
Dwyer, C. M., Lawrence, A. B., Bishop, S. C. & Lewis, M. (2003). Ewe-lamb bonding behaviours at birth are affected by maternal undernutrition in pregnancy. British Journal of Nutrition 89, 123136.CrossRefGoogle ScholarPubMed
Dwyer, C. M., McIlvaney, K., Coombs, T., Ashworth, C. J. & Rooke, J. A. (2010 a). The effect of maternal undernutrition during the first 90 days of gestation on neonatal lamb behaviour and survival. In The Power of Programming: International Conference on Developmental Origins of Health and Disease, Munich, 6–8 May 2010 (Eds Koletzko, B., Brands, B. & Hanson, M.), p. 96. Munich, Germany: DOHaD.Google Scholar
Dwyer, C. M., McIlvaney, K. M., Coombs, T. M., Rooke, J. A. & Ashworth, C. J. (2010 b). Undernutrition in early to mid pregnancy causes deficits in the expression of maternal behaviour in sheep that may affect lamb survival. In Proceedings of the 44th Congress of the International Society of Applied Ethology: Coping in Large Groups, Uppsala, Sweden (Eds Lidfors, L., Blokhuis, H. & Keeling, L.), p. 45. Wageningen, The Netherlands: Wageningen Academic Publishers.Google Scholar
Encinias, H. B., Lardy, G. P., Encinias, A. M. & Bauer, M. L. (2004). High linoleic acid safflower seed supplementation for gestating ewes: effects on ewe performance, lamb survival, and brown fat stores. Journal of Animal Science 82, 36543661.Google Scholar
Erhard, H. W., Boissy, A., Rae, M. T. & Rhind, S. M. (2004). Effects of prenatal undernutrition on emotional reactivity and cognitive flexibility in adult sheep. Behavioural Brain Research 151, 2535.Google Scholar
Everett-Hincks, J. M., Blair, H. T., Stafford, K. J., Lopez-Villalobos, N., Kenyon, P. R. & Morris, S. T. (2005). The effect of pasture allowance fed to twin- and triplet-bearing ewes in late pregnancy on ewe and lamb behaviour and performance to weaning. Livestock Production Science 97, 253266.Google Scholar
Ferguson, M. B., Thompson, A. N., Gordon, D. J., Hyder, M. W., Kearney, G. A., Oldham, C. M. & Paganoni, B. L. (2011). The wool production and reproduction of Merino ewes can be predicted from changes in liveweight during pregnancy and lactation. Animal Production Science 51, 763775.CrossRefGoogle Scholar
Fisher, G. E. J. & MacPherson, A. (1991). Effect of cobalt deficiency in the pregnant ewe on reproductive performance and lamb viability. Research in Veterinary Science 50, 319327.Google Scholar
Ford, S. P. & Long, N. M. (2011). Evidence for similar changes in offspring phenotype following either maternal undernutrition or overnutrition: potential impact on fetal epigenetic mechanisms. Reproduction, Fertility and Development 24, 105111.CrossRefGoogle ScholarPubMed
Gluckman, P. D. & Hanson, M. A. (2004). Developmental origins of disease paradigm: a mechanistic and evolutionary perspective. Pediatric Research 56, 311317.Google Scholar
Guinan, M., Harrison, G., Boland, T. M. & Crosby, T. F. (2005). The effect of timing of mineral supplementation of the ewe diet in late pregnancy on immunoglobulin G absorption by the lamb. Animal Science 80, 193200.Google Scholar
Hammer, C. J., Thorson, J. F., Meyer, A. M., Redmer, D. A., Luther, J. S., Neville, T. L., Reed, J. J., Reynolds, L. P., Caton, J. S. & Vonnahme, K. A. (2011). Effects of maternal selenium supply and plane of nutrition during gestation on passive transfer of immunity and health in neonatal lambs. Journal of Animal Science 89, 36903698.CrossRefGoogle ScholarPubMed
Hernandez, C. E., Matthews, L. R., Oliver, M. H., Bloomfield, F. H. & Harding, J. E. (2009). Effects of sex, litter size and periconceptional ewe nutrition on the ewe-lamb bond. Applied Animal Behaviour Science 120, 7683.Google Scholar
Hild, S., Coulon, M., Schroeer, A., Andersen, I. L. & Zanella, A. J. (2011). Gentle vs. aversive handling of pregnant ewes. I. Maternal cortisol and behavior. Physiology and Behavior 104, 384391.Google Scholar
Holst, P. J., Killeen, I. D. & Cullis, B. R. (1986). Nutrition of the pregnant ewe and its effect on gestation length, lamb birth-weight and lamb survival. Australian Journal of Agricultural Research 37, 647655.Google Scholar
Husted, S. M., Nielsen, M. O., Tygesen, M. P., Kiani, A., Blache, D. & Ingvartsen, K. L. (2007). Programming of intermediate metabolism in young lambs affected by late gestational maternal undernourishment. American Journal of Physiology: Endocrinology and Metabolism 293, E548E557.Google Scholar
Jenkinson, C. M. C., Kenyon, P. R., Blair, H. T., Breier, B. H. & Luckman, P. D. (2009). Birth weight effect in twin-born lambs from mid-pregnancy shearing is associated with changes in maternal IGF-I concentration. New Zealand Journal of Agricultural Research 52, 261268.CrossRefGoogle Scholar
Keady, T. W. J. & Hanrahan, J. P. (2009). Effects of shearing at housing, grass silage feed value and extended grazing herbage allowance on ewe and subsequent lamb performance. Animal 3, 143151.Google Scholar
Keady, T. W. J., Hanrahan, J. P. & Flanagan, S. (2007). Effects of extended grazing during mid, late or throughout pregnancy, and winter shearing of housed ewes, on ewe and lamb performance. Irish Journal of Agricultural and Food Research 46, 169180.Google Scholar
Keithly, J. I., Kott, R. W., Berardinelli, J. G., Moreaux, S. & Hatfield, P. G. (2011). Thermogenesis, blood metabolites and hormones, and growth of lambs born to ewes supplemented with algae-derived docosahexaenoic acid. Journal of Animal Science 89, 43054313.Google Scholar
Kenyon, P. R., Morris, S. T., Revell, D. K. & McCutcheon, S. N. (2002 a). Maternal constraint and the birthweight response to mid-pregnancy shearing. Australian Journal of Agricultural Research 53, 511517.Google Scholar
Kenyon, P. R., Morris, S. T., Revell, D. K. & McCutcheon, S. N. (2002 b). Nutrition during mid to late pregnancy does not affect the birthweight response to mid pregnancy shearing. Australian Journal of Agricultural Research 53, 1320.CrossRefGoogle Scholar
Kenyon, P. R., Morris, S. T., Revell, D. K. & McCutcheon, S. N. (2003). Shearing during pregnancy – review of a policy to increase birthweight and survival of lambs in New Zealand pastoral farming systems. New Zealand Veterinary Journal 51, 200207.Google Scholar
Kenyon, P. R., Morel, P. C. H. & Morris, S. T. (2004). Effect of liveweight and condition score of ewes at mating, and shearing mid-pregnancy, on birthweights and growth rates of twin lambs to weaning. New Zealand Veterinary Journal 52, 145149.Google Scholar
Kenyon, P. R., Sherlock, R. G., Parkinson, T. J. & Morris, S. T. (2005). The effect of maternal shearing and thyroid hormone treatments in mid pregnancy on the birth weight, follicle, and wool characteristics of lambs. New Zealand Journal of Agricultural Research 48, 293300.Google Scholar
Kenyon, P. R., Blair, H. T., Jenkinson, C. M. C., Morris, S. T., Mackenzie, D. D. S., Peterson, S. W., Firth, E. C. & Johnston, P. L. (2009). The effect of ewe size and nutritional regimen beginning in early pregnancy on ewe and lamb performance to weaning. New Zealand Journal of Agricultural Research 52, 203212.Google Scholar
Kenyon, P. R., Pain, S. J., Hutton, P. G., Jenkinson, C. M. C., Morris, S. T., Peterson, S. W. & Blair, H. T. (2011). Effects of twin-bearing ewe nutritional treatments on ewe and lamb performance to weaning. Animal Production Science 51, 406415.Google Scholar
Kerslake, J. I., Kenyon, P. R., Stafford, K. J., Morris, S. T. & Morel, P. C. H. (2010). Can maternal iodine supplementation improve twin- and triplet-born lamb plasma thyroid concentrations and thermoregulation capabilities in the first 24–36 h of life? Journal of Agricultural Science, Cambridge 148, 453463.Google Scholar
Khalaf, A. M., Doxey, D. L., Baxter, J. T., Black, W. J. M., FitzSimons, J. & Ferguson, J. A. (1979). Late pregnancy ewe feeding and lamb performance in early life. 1. Pregnancy feeding levels and perinatal lamb mortality. Animal Production 29, 393399.Google Scholar
King, S., Dancause, K., Turcotte-Tremblay, A-M., Veru, F. & Laplante, D. P. (2012). Using natural disasters to study the effects of prenatal maternal stress on child health and development. Birth Defects Research Part C: Embryo Today: Reviews 96, 273288.Google Scholar
Kleemann, D. O., Walker, S. K., Walkley, J. R. W., Ponzoni, R. W., Smith, D. H., Grimson, R. J. & Seamark, R. F. (1993). Effect of nutrition during pregnancy on birth weight and lamb survival in FecB Booroola×South Australian merino ewes. Animal Reproduction Science 31, 213224.CrossRefGoogle Scholar
Kott, R. W., Thomas, V. M., Hatfield, P. G., Evans, T. & Davis, K. C. (1998). Effects of dietary vitamin E supplementation during late pregnancy on lamb mortality and ewe productivity. Journal of the American Veterinary Medical Association 212, 9971000.Google Scholar
Lumey, L. H., Stein, A. D. & Susser, E. (2011). Prenatal famine and adult health. Annual Review of Public Health 32, 237262.Google Scholar
Luther, J., Aitken, R., Milne, J., Matsuzaki, M., Reynolds, L., Redmer, D. & Wallace, J. (2007). Maternal and fetal growth, body composition, endocrinology, and metabolic status in undernourished adolescent sheep. Biology of Reproduction 77, 343350.Google Scholar
Luther, J. S., Redmer, D. A., Reynolds, L. P. & Wallace, J. M. (2005). Nutritional paradigms of ovine fetal growth restriction: implications for human pregnancy. Human Fertility 8, 179187.Google Scholar
Meyer, A. M., Reed, J. J., Neville, T. L., Taylor, J. B., Hammer, C. J., Reynolds, L. P., Redmer, D. A., Vonnahme, K. A. & Caton, J. S. (2010). Effects of plane of nutrition and selenium supply during gestation on ewe and neonatal offspring performance, body composition, and serum selenium. Journal of Animal Science 88, 17861800.CrossRefGoogle ScholarPubMed
Miller, D. R., Jackson, R. B., Blache, D. & Roche, J. R. (2009). Metabolic maturity at birth and neonate lamb survival and growth: the effects of maternal low-dose dexamethasone treatment. Journal of Animal Science 87, 31673178.Google Scholar
Mitchell, L. M., Robinson, J. J., Watt, R. G., McEvoy, T. G., Ashworth, C. J., Rooke, J. A. & Dwyer, C. M. (2007). Effects of cobalt/vitamin B12 status in ewes on ovum development and lamb viability at birth. Reproduction, Fertility and Development 19, 553562.Google Scholar
Morris, S. T., Kenyon, P. R. & West, D. M. (2005). Effect of hogget nutrition in pregnancy on lamb birthweight and survival to weaning. New Zealand Journal of Agricultural Research 48, 165175.Google Scholar
Morris, S. T., McCutcheon, S. N. & Revell, D. K. (2000). Birth weight responses to shearing ewes in early to mid gestation. Animal Science 70, 363369.Google Scholar
Moss, T. J. M., Sloboda, D. M., Gurrin, L. C., Harding, R., Challis, J. R. G. & Newnham, J. P. (2001). Programming effects in sheep of prenatal growth restriction and glucocorticoid exposure. American Journal of Physiology: Regulatory Integrative and Comparative Physiology 281, R960R970.Google Scholar
Munoz, C., Carson, A. F., McCoy, M. A., Dawson, L. E. R., O'Connell, N. E. & Gordon, A. W. (2008 a). Nutritional status of adult ewes during early and mid-pregnancy. 2. Effects of supplementation with selenised yeast on ewe reproduction and offspring performance to weaning. Animal 2, 6472.Google Scholar
Munoz, C., Carson, A. F., McCoy, M. A., Dawson, L. E. R., O'Connell, N. E. & Gordon, A. W. (2008 b). Nutritonal status of adult ewes during early and mid-pregnancy. 1. Effects of plane of nutrition on ewe reproduction and offspring performance to weaning. Animal 2, 5263.Google Scholar
Munoz, C., Carson, A. F., McCoy, M. A., Dawson, L. E. R., O'Connell, N. E. & Gordon, A. W. (2009). Effect of plane of nutrition of 1-and 2-year-old ewes in early and mid-pregnancy on ewe reproduction and offspring performance up to weaning. Animal 3, 657669.Google Scholar
Nettle, D., Frankenhuis, W. E. & Rickard, I. J. (2013). The evolution of predictive adaptive responses in human life history. Proceedings of the Royal Society B: Biological Sciences 280, 2013134313. doi: 10.7287/peerj.preprints.23v1 Google ScholarPubMed
Neville, T. L., Caton, J. S., Hammer, C. J., Reed, J. J., Luther, J. S., Taylor, J. B., Redmer, D. A., Reynolds, L. P. & Vonnahme, K. A. (2010). Ovine offspring growth and diet digestibility are influenced by maternal selenium supplementation and nutritional intake during pregnancy despite a common postnatal diet. Journal of Animal Science 88, 36453656.Google Scholar
Oldham, C. M., Thompson, A. N., Ferguson, M. B., Gordon, D. J., Kearney, G. A. & Paganoni, B. L. (2011). The birthweight and survival of Merino lambs can be predicted from the profile of liveweight change of their mothers during pregnancy. Animal Production Science 51, 776783.Google Scholar
Pickard, R. M., Beard, A. R., Seal, C. J. & Edwards, S. A. (2008). Neonatal lamb vigour is improved by feeding docosahexaenoic acid in the form of algal biomass during late gestation. Animal 2, 11861192.Google Scholar
Quirk, M. F. & Norton, B. W. (1987). The relationship between the cobalt nutrition of ewes and the vitamin-B12 status of ewes and their lambs. Australian Journal of Agricultural Research 38, 10711082.Google Scholar
Roghair, R. D., Segar, J. L., Sharma, R. V., Zimmerman, M. C., Jagadeesha, D. K., Segar, E. M., Scholz, T. D. & Lamb, F. S. (2005). Newborn lamb coronary artery reactivity is programmed by early gestation dexamethasone before the onset of systemic hypertension. American Journal of Physiology: Regulatory Integrative and Comparative Physiology 289, R1169R1176.Google Scholar
Rooke, I. A., Dwyer, C. M. & Ashworth, C. J. (2008). The potential for improving physiological, behavioural and immunological responses in the neonatal lamb by trace element and vitamin supplementation of the ewe. Animal 2, 514524.Google Scholar
Rooke, J. A., Matheson, S., Ison, S., Jack, M., Ashworth, C. J. & Dwyer, C. M. (2009). The effect of late pregnancy supplementation of ewes with vitamin E on lamb vigour. Animal 3, 15551561.Google Scholar
Rooke, J. A., Houdijk, J. G. M., McIlvaney, K., Ashworth, C. J. & Dwyer, C. M. (2010). Differential effects of maternal undernutrition between days 1 and 90 of pregnancy on ewe and lamb performance and lamb parasitism in hill or lowland breeds. Journal of Animal Science 88, 38333842.CrossRefGoogle ScholarPubMed
Rose, M. T., Wolf, B. T. & Haresign, W. (2007). Effect of the level of iodine in the diet of pregnant ewes on the concentration of immunoglobulin G in the plasma of neonatal lambs following the consumption of colostrum. British Journal of Nutrition 97, 315320.Google Scholar
Roussel, S., Hemsworth, P. H., Boissy, A. & Duvaux-Ponter, C. (2004). Effects of repeated stress during pregnancy in ewes on the behavioural and physiological responses to stressful events and birth weight of their offspring. Applied Animal Behaviour Science 85, 259276.Google Scholar
Roussel-Huchette, S., Hemsworth, P. H., Boissy, A. & Duvaux-Ponterc, C. (2008). Repeated transport and isolation during pregnancy in ewes: Differential effects on emotional reactivity and weight of their offspring. Applied Animal Behaviour Science 109, 275291.CrossRefGoogle Scholar
Rutter, W., Laird, T. R. & Broadbent, P. J. (1971). Effects of clipping pregnant ewes at housing and of feeding different basal roughages. Animal Production 13, 329336.Google Scholar
Sargeant, J. M., Rajic, A., Read, S. & Ohlsson, A. (2006). The process of systematic review and its application in agri-food public-health. Preventive Veterinary Medicine 75, 141151.CrossRefGoogle ScholarPubMed
Sphor, L., Banchero, G., Correa, G., Osorio, M. T. M. & Quintans, G. (2011). Early prepartum shearing increases milk production of wool sheep and the weight of the lambs at birth and weaning. Small Ruminant Research 99, 4447.Google Scholar
Stott, A. W. & Slee, J. (1985). The effect of environmental-temperature during pregnancy on thermoregulation in the newborn lamb. Animal Production 41, 341347.Google Scholar
Suttle, N. F. (2010). Mineral Nutrition of Livestock. Wallingford, Oxon, UK: CABI.Google Scholar
Swanson, T. J., Hammer, C. J., Luther, J. S., Carlson, D. B., Taylor, J. B., Redmer, D. A., Neville, T. L., Reed, J. J., Reynolds, L. P., Caton, J. S. & Vonnahme, K. A. (2008). Effects of gestational plane of nutrition and selenium supplementation on mammary development and colostrum quality in pregnant ewe lambs. Journal of Animal Science 86, 24152423.Google Scholar
Symonds, M. E., Bryant, M. J., Shepherd, D. A. L. & Lomax, M. A. (1988). Glucose-metabolism in shorn and unshorn pregnant sheep. British Journal of Nutrition 60, 249263.Google Scholar
Symonds, M. E., Sebert, S. P. & Budge, H. (2010). Nutritional regulation of etal growth and implications for productive life in ruminants. Animal 4, 10751083.Google Scholar
Thompson, A. N., Ferguson, M. B., Campbell, A. J. D., Gordon, D. J., Kearney, G. A., Oldham, C. M. & Paganoni, B. L. (2011). Improving the nutrition of Merino ewes during pregnancy and lactation increases weaning weight and survival of progeny but does not affect their mature size. Animal Production Science 51, 784793.Google Scholar
Tygesen, M. P., Tauson, A. H., Blache, D., Husted, S. M. & Nielsen, M. O. (2008). Late foetal life nutrient restriction and sire genotype affect postnatal performance of lambs. Animal 2, 574581.Google Scholar
Van Der Linden, D. S., Kenyon, P. R., Blair, H. T., Lopez-Villalobos, N., Jenkinson, C. M. C., Peterson, S. W. & Mackenzie, D. D. S. (2009). Effects of ewe size and nutrition on fetal mammary gland development and lactational performance of offspring at their first lactation. Journal of Animal Science 87, 39443954.Google Scholar
Van Der Linden, D. S., Kenyon, P. R., Lopez-Villalobos, N., Jenkinson, C. M. C., Peterson, S. W. & Blair, H. T. (2010). Effects of ewe size and nutrition during pregnancy on performance of 2-year-old female offspring. Journal of Agricultural Science, Cambridge 148, 465475.Google Scholar
Vincent, I. C., Williams, H. L. & Hill, R. (1985). The influence of a low-utrient intake after mating on gestation and perinatal survival of lambs. British Veterinary Journal 141, 611617.Google Scholar
Wallace, J. M., Regnault, T. R. H., Limesand, S. W., Hay, W. W. & Anthony, R. V. (2005 a). Investigating the causes of low birth weight in contrasting ovine paradigms. Journal of Physiology 565, 1926.Google Scholar
Wallace, J. M., Milne, J. S. & Aitken, R. P. (2005 b). The effect of overnourishing singleton-bearing adult ewes on nutrient partitioning to the gravid uterus. British Journal of Nutrition 94, 533539.Google Scholar
Wallace, J. M., Milne, J. S. & Aitken, R. P. (2010). Effect of weight and adiposity at conception and wide variations in gestational dietary intake on pregnancy outcome and early postnatal performance in young adolescent sheep. Biology of Reproduction 82, 320330.Google Scholar
Wallace, J. M., Milne, J. S., Green, L. R. & Aitken, R. P. (2011). Postnatal hypothalamic-pituitary-adrenal function in sheep is influenced by age and sex, but not by prenatal growth restriction. Reproduction, Fertility and Development 23, 275284.Google Scholar
Wu, G., Bazer, F. W., Wallace, J. M. & Spencer, T. E. (2006). BOARD-INVITED REVIEW: intrauterine growth retardation: implications for the animal sciences. Journal of Animal Science 84, 23162337.Google Scholar
Supplementary material: PDF

Rooke Supplementary Material

Tables S1-S3

Download Rooke Supplementary Material(PDF)
PDF 139.4 KB