Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-20T16:54:39.204Z Has data issue: false hasContentIssue false

The long-term effect of climate change on productivity of winter wheat in Denmark: a scenario analysis using three crop models

Published online by Cambridge University Press:  12 January 2017

I. OZTURK*
Affiliation:
Department of Agroecology, Aarhus University, Blichers Alle 20, DK-8830, Tjele, Denmark
B. SHARIF
Affiliation:
Department of Agroecology, Aarhus University, Blichers Alle 20, DK-8830, Tjele, Denmark
S. BABY
Affiliation:
Vestas Wind Systems A/S, Hedeager 42, DK-8200, Aarhus N, Denmark
M. JABLOUN
Affiliation:
Department of Agroecology, Aarhus University, Blichers Alle 20, DK-8830, Tjele, Denmark
J. E. OLESEN
Affiliation:
Department of Agroecology, Aarhus University, Blichers Alle 20, DK-8830, Tjele, Denmark
*
*To whom all correspondence should be addressed. Email: Isik.Ozturk@agro.au.dk

Summary

The response of grain yield, grain nitrogen (N), phenological development and evapotranspiration of winter wheat to climate change was analysed over an 80-year period based on climate change predictions of four regional circulation models (RCMs) under the IPCC (International Panel on Climate Change) A1B emission scenario for the 21st century using three process-based models; A 20-year set (1991–2010) of observed daily climate data from Aarslev, Denmark was used to form the baseline, from which the RCM data were generated. The simulation of crop growth was performed with increasing carbon dioxide (CO2) levels and under continuous mono-cropping system at different N input rates. Results indicated that grain yield and grain N will be reduced in the future despite increased CO2 concentration in the atmosphere. While the increased N input may increase yield, it will not increase grain N. The present study suggested that in Denmark, alternative strategies for organic N acquisition of plants must be developed. Statistical analyses showed that while the crop models were the main source of uncertainty in estimating crop performance indicators in response to climate change, the choice of RCM was the main source of uncertainty in relation to baseline estimations.

Type
Climate Change and Agriculture Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ainsworth, E. A. & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising CO2: mechanisms and environmental interactions. Plant, Cell and Environment 30, 258270.CrossRefGoogle ScholarPubMed
Ainsworth, E. A., Davey, P. A., Bernacchi, C. J., Dermody, O. C., Heaton, E. A., Moore, D. J., Morgan, P. B., Naidu, S. L., Ra, H. S. Y., Zhu, X. G., Curtis, P. S. & Long, S. P. (2002). A meta-analysis of elevated CO2 effects on soybean (Glycine max) physiology, growth and yield. Global Change Biology 8, 695709.CrossRefGoogle Scholar
Allerup, P., Madsen, H. & Vejen, F. (1997). A comprehensive model for correcting point precipitation. Hydrology Research 28, 120.CrossRefGoogle Scholar
Arnold, J. G., Srinivasan, R., Muttiah, R. S. & Williams, J. R. (1998). Large area hydrologic modeling and assessment. Part 1: model development. Journal of the American Water Resources Association 34, 7389.CrossRefGoogle Scholar
Asseng, S., Ewert, F., Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K. J., Thorburn, P. J., Rotter, R. P., Cammarano, D., Brisson, N., Basso, B., Martre, P., Aggarwal, P. K., Angulo, C., Bertuzzi, P., Biernath, C., Challinor, A. J., Doltra, J., Gayler, S., Goldberg, R., Grant, R., Heng, L., Hooker, J., Hunt, L. A., Ingwersen, J., Izaurralde, R. C., Kersebaum, K. C., Muller, C., Kumar, S. N., Nendel, C., O'Leary, G., Olesen, J. E., Osborne, T. M., Palosuo, T., Priesack, E., Ripoche, D., Semenov, M. A., Shcherbak, I., Steduto, P., Stockle, C., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Travasso, M., Waha, K., Wallach, D., White, J. W., Williams, J. R. & Wolf, J. (2013). Uncertainty in simulating wheat yields under climate change. Nature Climate Change 3, 827832.CrossRefGoogle Scholar
Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R. H. B., Singmann, H., Dai, B., Grothendieck, G. & Green, P. (2016). lme4: Linear Mixed-Effects Models using ‘Eigen’ and S4. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Berntsen, J., Petersen, B. M., Jacobsen, B. H., Olesen, J. E. & Hutchings, N. J. (2003). Evaluating nitrogen taxation scenarios using the dynamic whole farm simulation model Fasset. Agricultural Systems 76, 817839.CrossRefGoogle Scholar
Bloom, A. J. (2009). As carbon dioxide rises, food quality will decline without careful nitrogen management. California Agriculture 63, 6772.CrossRefGoogle Scholar
Bloom, A. J., Burger, M., Rubio-Asensio, J. S. & Cousins, A. B. (2010). Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis . Science 328, 899903.CrossRefGoogle ScholarPubMed
Bloom, A., Burger, M., Kimball, B. A. & Pinter, P. J. (2014). Nitrate assimilation is inhibited by elevated CO2 in field-grown wheat. Nature Climate Change 4, 477480.CrossRefGoogle Scholar
Borgesen, C. D. & Olesen, J. E. (2011). A probabilistic assessment of climate change impacts on yield and nitrogen leaching from winter wheat in Denmark. Natural Hazards and Earth System Sciences 11, 25412553.CrossRefGoogle Scholar
Breuning-Madsen, H. & Jensen, N. H. (1996). Soil map of Denmark according to the revised fao legend 1990. Geografisk Tidsskrift - Danish Journal of Geography 96, 5159.CrossRefGoogle Scholar
Brouder, S. M. & Volenec, J. J. (2008). Impact of climate change on crop nutrient and water use efficiencies. Physiologia Plantarum 133, 705724.CrossRefGoogle ScholarPubMed
Cabrera-Bosquet, L., Albrizio, R., Araus, J. L. & Nogues, S. (2009). Photosynthetic capacity of field-grown durum wheat under different n availabilities: a comparative study from leaf to canopy. Environmental and Experimental Botany 67, 145152.CrossRefGoogle Scholar
Cappelen, J. (2012). Guide to Climate Data and Information from the Danish Meteorological Institute. Technical Report 12–08. Copenhagen, Denmark: Danish Meteorological Institute.Google Scholar
Cho, K., Falloon, P., Gornall, J., Betts, R. & Clark, R. (2012). Winter wheat yields in the UK: uncertainties in climate and management impacts. Climate Research 54, 4968.CrossRefGoogle Scholar
Christensen, J. H. & Christensen, O. B. (2007). A summary of the prudence model projections of changes in European climate by the end of this century. Climatic Change 81, (Suppl. 1), 730.CrossRefGoogle Scholar
Ciais, P., Gervois, S., Vuichard, N., Piao, S. L. & Viovy, N. (2011). Effects of land use change and management on the European cropland carbon balance. Global Change Biology 17, 320338.CrossRefGoogle Scholar
De Oliveira, E. D., Bramley, H., Siddique, K. H. M., Henty, S., Berger, J. & Palta, J. A. (2012). Can elevated CO2 combined with high temperature ameliorate the effect of terminal drought in wheat? Functional Plant Biology 40, 160171.CrossRefGoogle Scholar
de Wrachien, D. & Goli, M. B. (2015). Global warming effects on irrigation development and crop production: a world-wide view. Agricultural Sciences 6, 734747.CrossRefGoogle Scholar
Doltra, J., Lægdsmand, M. & Olesen, J. E. (2014). Impacts of projected climate change on productivity and nitrogen leaching of crop rotations in arable and pig farming systems in Denmark. Journal of Agricultural Science, Cambridge 152, 7592.CrossRefGoogle Scholar
Drake, B. G., Gonzalez-Meler, M. A. & Long, S. P. (1997). More efficient plants: a consequence of rising atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology 48, 609639.CrossRefGoogle ScholarPubMed
Easterling, W. E., Rosenberg, N. J., McKenney, M. S., Jones, C. A., Dyke, P. T. & Williams, J. R. (1992). Preparing the erosion productivity impact calculator (epic). model to simulate crop response to climate change and the direct effects of CO2 . Agricultural and Forest Meteorology 59, 1734.CrossRefGoogle Scholar
Evans, L. T. & Dunstone, R. L. (1970). Some physiological aspects of evolution in wheat. Australian Journal of Biological Sciences 23, 725741.CrossRefGoogle Scholar
Fischer, R. A. (2011). Wheat physiology: a review of recent developments. Crop & Pasture Science 62, 95114.CrossRefGoogle Scholar
Hansen, S., Jensen, H. E., Nielsen, N. E. & Svendsen, H. (1991). Simulation of nitrogen dynamics and biomass production in winter-wheat using the Danish simulation model DAISY. Fertilizer Research 27, 245259.CrossRefGoogle Scholar
Hay, R. & Porter, J. (2006). The Physiology of Crop Yield. Oxford, UK: Blackwell Publishing.Google Scholar
Henriksen, H. J., Rosenbom, A., Keur, P. V. D., Olesen, J. E., Jørgensen, L. J., Kjær, J., Sonnenborg, T. & Christensen, O. B. (2013). Prediction of Climatic Impacts on Pesticide Leaching to the Aquatic Environments: Evaluation of Direct and Indirect (Crop Rotations, Crop Management, and Pesticide Use) Climate Change Effects of Pesticide Leaching in a Regulatory Perspective for Two Danish Cases. Prediction Research no. 143. Copenhagen, Denmark: Miljøstyrelsen.Google Scholar
Holzworth, D. P., Huth, N. I., deVoil, P. G., Zurcher, E. J., Herrmann, N. I., McLean, G., Chenu, K., van Oosterom, E. J., Snow, V., Murphy, C., Moore, A. D., Brown, H., Whish, J. P. M., Verrall, S., Fainges, J., Bell, L. W., Peake, A. S., Poulton, P. L., Hochman, Z., Thorburn, P. J., Gaydon, D. S., Dalgliesh, N. P., Rodriguez, D., Cox, H., Chapman, S., Doherty, A., Teixeira, E., Sharp, J., Cichota, R., Vogeler, I., Li, F. Y., Wang, E., Hammer, G. L., Robertson, M. J., Dimes, J. P., Whitbread, A. M., Hunt, J., van Rees, H., McClelland, T., Carberry, P. S., Hargreaves, J. N. G., MacLeod, N., McDonald, C., Harsdorf, J., Wedgwood, S. & Keating, B. A. (2014). Apsim – Evolution towards a new generation of agricultural systems simulation. Environmental Modelling & Software 62, 327350.CrossRefGoogle Scholar
Jacobs, A. F. G. & De Bruin, H. A. R. (1998). Makkink's equation for evapotranspiration applied to unstressed maize. Hydrological Processes 12, 10631066.3.0.CO;2-2>CrossRefGoogle Scholar
Jeppesen, E., Kronvang, B., Olesen, J. E., Audet, J., Søndergaard, M., Hoffmann, C. C., Andersen, H. E., Lauridsen, T. L., Liboriussen, L., Larsen, S. E., Beklioglu, M., Meerhoff, M., Øzen, A. & Øzkan, K. (2011). Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia 663, 121.CrossRefGoogle Scholar
Kersebaum, K. C. & Nendel, C. (2014). Site-specific impacts of climate change on wheat production across regions of Germany using different CO2 response functions. European Journal of Agronomy 52, 2232.CrossRefGoogle Scholar
Kimball, B. A. (2016). Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Current Opinion in Plant Biology 31, 3643.CrossRefGoogle ScholarPubMed
Klein, T., Holzkämper, A., Calanca, P., Seppelt, R. & Fuhrer, J. (2013). Adapting agricultural land management to climate change: a regional multi-objective optimization approach. Landscape Ecology 28, 20292047.CrossRefGoogle Scholar
Kristensen, K., Schelde, K. & Olesen, J. E. (2011). Winter wheat yield response to climate variability in Denmark. Journal of Agricultural Science, Cambridge 149, 3347.CrossRefGoogle Scholar
Leakey, A. D. B., Ainsworth, E. A., Bernacchi, C. J., Rogers, A., Long, S. P. & Ort, D. R. (2009). Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from face. Journal of Experimental Botany 60, 28592876.CrossRefGoogle ScholarPubMed
Lehmann, N., Finger, R., Klein, T., Calanca, P. & Walter, A. (2013). Adapting crop management practices to climate change: modeling optimal solutions at the field scale. Agricultural Systems 117, 5565.CrossRefGoogle Scholar
Licker, R., Johnston, M., Foley, J. A., Barford, C., Kucharik, C. J., Monfreda, C. & Ramankutty, N. (2010). Mind the gap: how do climate and agricultural management explain the ‘yield gap’ of croplands around the world? Global Ecology and Biogeography 19, 769782.CrossRefGoogle Scholar
Long, S. P., Ainsworth, E. A., Leakey, A. D. B. & Morgan, P. B. (2005). Global food insecurity. Treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields. Philosophical Transactions of the Royal Society B: Biological Sciences 360, 20112020.CrossRefGoogle ScholarPubMed
Long, S. P., Ainsworth, E. A., Leakey, A. D. B., Nosberger, J. & Ort, D. R. (2006 a). Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312, 19181921.CrossRefGoogle ScholarPubMed
Long, S. P., Zhu, X. G., Naidu, S. L. & Ort, D. R. (2006 b). Can improvement in photosynthesis increase crop yields? Plant, Cell and Environment 29, 315330.CrossRefGoogle ScholarPubMed
Manderscheid, R. & Weigel, H. J. (2007). Drought stress effects on wheat are mitigated by atmospheric CO2 enrichment. Agronomy for Sustainable Development 27, 7987.CrossRefGoogle Scholar
Moore, B. D., Cheng, S. H., Sims, D. & Seemann, J. R. (1999). The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2 . Plant, Cell and Environment 22, 567582.CrossRefGoogle Scholar
Nair, S. S., King, K. W., Witter, J. D., Sohngen, B. L. & Fausey, N. R. (2011). Importance of crop yield in calibrating watershed water quality simulation tools. Journal of the American Water Resources Association 47, 12851297.CrossRefGoogle Scholar
Nakicenovic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Grubler, A. & Jung, T. Y. (2000). Special Report On Emission Scenarios. Cambridge, UK: Cambridge University Press.Google Scholar
Newbery, F., Qi, A. M., Fitt, B. D. L. (2016). Modelling impacts of climate change on arable crop diseases: progress, challenges and applications. Current Opinion in Plant Biology 32, 101109.CrossRefGoogle ScholarPubMed
Nowak, R. S., Ellsworth, D. S. & Smith, S. D. (2004). Functional responses of plants to elevated atmospheric CO2 – do photosynthetic and productivity data from face experiments support early predictions? New Phytologist 162, 253280.CrossRefGoogle Scholar
Olesen, J. E., Petersen, B. M., Berntsen, J., Hansen, S., Jamieson, P. D. & Thomsen, A. G. (2002). Comparison of methods for simulating effects of nitrogen on green area index and dry matter growth in winter wheat. Field Crops Research 74, 131149.CrossRefGoogle Scholar
Olesen, J. E., Børgesen, C. D., Elsgaard, L., Palosuo, T., Rotter, R. P., Skjelvåg, A. O., Peltonen-Sainio, P., Börjesson, T., Trnka, M., Ewert, F., Siebert, S., Brisson, N., Eitzinger, J., van Asselt, E. D., Oberforster, M. & van der Fels-Klerx, H. (2012). Changes in time of sowing, flowering and maturity of cereals in Europe under climate change. Food Additives and Contaminants Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment 29, 15271542.CrossRefGoogle ScholarPubMed
Özdoğan, M. (2011). Modeling the impacts of climate change on wheat yields in northwestern Turkey. Agriculture, Ecosystems & Environment 141, 112.CrossRefGoogle Scholar
Palosuo, T., Kersebaum, K. C., Angulo, C., Hlavinka, P., Moriondo, M., Olesen, J. E., Patil, R. H., Ruget, F., Rumbaur, C., Takáč, J., Trnka, M., Bindi, M., Çaldağ, B., Ewert, F., Ferrise, R., Mirschel, W., Şaylan, L., Šiška, B. & Rötter, R. (2011). Simulation of winter wheat yield and its variability in different climates of Europe: a comparison of eight crop growth models. European Journal of Agronomy 35, 103114.CrossRefGoogle Scholar
Parry, M. L., Rosenzweig, C., Iglesias, A., Livermore, M. & Fischer, G. (2004). Effects of climate change on global food production under sres emissions and socio-economic scenarios. Global Environmental Change 14, 5367.CrossRefGoogle Scholar
Patil, R. H., Laegdsmand, M., Olesen, J. E. & Porter, J. R. (2010). Growth and yield response of winter wheat to soil warming and rainfall patterns. Journal of Agricultural Science, Cambridge 148, 553566.CrossRefGoogle Scholar
Patil, R. H., Laegdsmand, M., Olesen, J. E. & Porter, J. R. (2012). Sensitivity of crop yield and N losses in winter wheat to changes in mean and variability of temperature and precipitation in Denmark using The Fasset model. Acta Agriculturae Scandinavica Section B: Soil and Plant Science 62, 335351.Google Scholar
Pedersen, E. P., Blicher-Mathiesen, G., Mejlhede, P. & Grant, R. (2010). Oplandsmodellering af Vand og Kvælstof i Umættet Zone for Oplandet til Lillebæk. Faglig rapport fra DMU nr. 756. Roskilde, Denmark: Danmarks Miljøundersøgelser, Aarhus Universitet.Google Scholar
Plantedirektoratet (2013). Vejledning om Gødsknings- og Harmoniregler. Planperioden 1 August 2016 til 31 Juli 2017. Copenhagen, Denmark: Miljø- og Fødevareministeriet.Google Scholar
Qian, B. D., De Jong, R., Gameda, S., Huffman, T., Neilsen, D., Desjardins, R., Wang, H. & McConkey, B. (2013). Impact of climate change scenarios on Canadian agroclimatic indices. Canadian Journal of Soil Science 93, 243259.CrossRefGoogle Scholar
Rogers, A., Ainsworth, E. A. & Leakey, A. D. B. (2009). Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? Plant Physiology 151, 10091016.CrossRefGoogle ScholarPubMed
Ruane, A. C., Hudson, N. I., Asseng, S., Camarrano, D., Ewert, F., Martre, P., Boote, K. J., Thorburn, P. J., Aggarwal, P. K., Angulo, C., Basso, B., Bertuzzi, P., Biernath, C., Brisson, N., Challinor, A. J., Doltra, J., Gayler, S., Goldberg, R., Grant, R. F., Heng, L., Hooker, J., Hunt, L. A., Ingwersen, J., Izaurralde, R. C., Kersebaum, K. C., Kumar, S. N., Muller, C., Nendel, C., O'Leary, G., Olesen, J. E., Osborne, T. M., Palosuo, T., Priesack, E., Ripoche, D., Rötter, R. P., Semenov, M. A., Shcherbak, I., Steduto, P., Stöckle, C. O., Stratonovitch, P., Streck, T., Supit, I., Tao, F. L., Travasso, M., Waha, K., Wallach, D., White, J. W. & Wolf, J. (2016). Multi-wheat-model ensemble responses to interannual climate variability. Environmental Modelling & Software 81, 86101.CrossRefGoogle Scholar
Schielzeth, H. & Forstmeier, W. (2009). Conclusions beyond support: overconfident estimates in mixed models. Behavioural Ecology 20, 416420.CrossRefGoogle ScholarPubMed
Seaby, L. P. (2013). Uncertainty In Hydrological Change Modelling. PhD Thesis, Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen Denmark.Google Scholar
Semenov, M. A. (2009). Impacts of climate change on wheat in England and Wales. Journal of The Royal Society: Interface 6, 343350.Google ScholarPubMed
Smith, W. N., Grant, B. B., Desjardins, R. L., Kroebel, R., Li, C., Qian, B., Worth, D. E., McConkey, B. G. & Drury, C. F. (2013). Assessing the effects of climate change on crop production and ghg emissions in Canada. Agriculture, Ecosystems & Environment 179, 139150.CrossRefGoogle Scholar
Stisen, S., Højberg, A. L., Troldborg, L., Refsgaard, J. C., Christensen, B. S. B., Olsen, M. & Henriksen, H. J. (2012). On the importance of appropriate precipitation gauge catch correction for hydrological modelling at mid to high latitudes. Hydrology and Earth System Sciences 16, 41574176.CrossRefGoogle Scholar
Stockle, C. O., Williams, J. R., Rosenberg, N. J. & Jones, C. A. (1992). A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops. Part 1 – Modification of the EPIC model for climate change analysis. Agricultural Systems 38, 225238.CrossRefGoogle Scholar
Takano, Y. & Tsunoda, S. (1971). Curvilinear regression of the leaf photosynthetic rate on leaf nitrogen content among strains of oryza species. Japanese Journal of Breeding 21, 6976.Google Scholar
Tausz, M., Tausz-Posch, S., Norton, R. M., Fitzgerald, G. J., Nicolas, M. E. & Seneweera, S. (2013). Understanding crop physiology to select breeding targets and improve crop management under increasing atmospheric CO2 concentrations. Environmental and Experimental Botany 88, 7180.CrossRefGoogle Scholar
Van Der Linden, P. & Mitchell, J. F. B. (2009). ENSEMBLES: Climate Change and its Impacts: Summary of Research and Results from the ENSEMBLES Project. Exeter, UK: Met Office Hadley Centre.Google Scholar
Wall, G. W., Adam, N. R., Brooks, T. J., Kimball, B. A., Pinter, P. J., LaMorte, R. L., Adamsen, F. J., Hunsaker, D. J., Wechsung, G., Wechsung, F., Grossman-Clarke, S., Leavitt, S. W., Matthias, A. D. & Webber, A. N. (2000). Acclimation response of spring wheat in a free-air CO2 enrichment (FACE) atmosphere with variable soil nitrogen regimes. 2. Net assimilation and stomatal conductance of leaves. Photosynthesis Research 66, 7995.CrossRefGoogle Scholar
Wang, L., Feng, Z. Z. & Schjoerring, J. K. (2013). Effects of elevated atmospheric CO2 on physiology and yield of wheat (Triticum aestivum L.): a meta-analytic test of current hypotheses. Agriculture, Ecosystems & Environment 178, 5763.CrossRefGoogle Scholar
Yue, S. C., Meng, Q. F., Zhao, R. F., Ye, Y. L., Zhang, F. S., Cui, Z. L. & Chen, X. P. (2012). Change in nitrogen requirement with increasing grain yield for winter wheat. Agronomy Journal 104, 16871693.CrossRefGoogle Scholar