Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T11:42:45.495Z Has data issue: false hasContentIssue false

On-farm yield potential of local seed watermelon landraces under heat- and drought-prone conditions in Mali

Published online by Cambridge University Press:  14 November 2011

A. D. NANTOUMÉ
Affiliation:
Institut d'Economie Rurale/CRRA-Sotuba, Programme Fruits and Légumes, BP 262 Bamako, Mali Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
J. L. CHRISTIANSEN
Affiliation:
Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
S. B. ANDERSEN
Affiliation:
Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
B. D. JENSEN*
Affiliation:
Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
*
*To whom all correspondence should be addressed. Email: dahl@life.ku.dk and brita_dj@hotmail.com

Summary

On-farm yield experiments were carried out in the Tombouctou region of Mali in 2009/10 under heat- and drought-prone desert conditions with three local landraces of seed-type watermelons. The landraces, named Fombou, Kaneye and Musa Musa by the farmers, exhibited distinct characteristics for fruit morphology, but in particular for seed traits. On average, the three landraces produced a fruit yield of 11·6 t/ha and an estimated seed yield of 364 kg/ha, with no significant differences among landraces. Kaneye showed the highest stability of fruit number/ha in different field environments, suggesting this landrace is the best among the three for a poor growing environment, whereas Fombou and especially Musa Musa responded positively to more favourable environments. Seed weight revealed a different trend, with Fombou as the most responsive to favourable conditions, while Kaneye and Musa Musa were less responsive. The yields obtained suggest that these local landraces of watermelon are valuable plant genetic resources for securing food supply in arid, heat- and drought-prone areas.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Achigan-Dako, E. G., Fagbemissi, R., Avohou, H. T., Vodouhe, R. S., Coulibaly, O. & Ahanchede, A. (2008). Importance and practices of Egusi crops (Citrullus lanatus (Thunb.) Matsum. & Nakai, Cucumeropsis mannii Naudin and Lagenaria siceraria (Molina) Standl. cv. ‘Aklamkpa’) in sociolinguistic areas in Benin. Biotechnology, Agronomy, Society and Environment 12, 393403.Google Scholar
Badifu, G. I. (1993). Food potentials of some unconventional oilseeds grown in Nigeria. A brief review. Plant Foods for Human Nutrition 43, 211224.Google Scholar
Bankole, S. A., Osho, A., Joda, A. O. & Enikuomehin, O. A. (2005). Effect of drying method on the quality and storability of egusi melon seeds (Colocynthis citrullus L.). African Journal of Biotechnology 4, 799803.Google Scholar
Burkill, H. M. (1985). The Useful Plants of West Tropical Africa. Volume 1. Families A-D. 2nd edn. Kew, UK: Royal Botanical Gardens.Google Scholar
Das, M., Das, S. K. & Suthar, S. H. (2002). Composition of seed and characteristics of oil from karingda [Citrullus lanatus (Thumb) Mansf]. International Journal of Food Science and Technology 37, 893896.Google Scholar
EAPGREN (2007). Descriptor List for Characterization of Watermelon (Citrullus spp.) Genetic Resources. Eastern Africa Plant Genetic Resources Network Agricultural Research Corporation. Wad Medani, Sudan: Plant Genetic Resources Unit (PGRU).Google Scholar
El-Adawy, T. A. & Taha, K. M. (2001). Characteristics and composition of watermelon, pumpkin, and paprika seed oils and flours. Journal of Agricultural and Food Chemistry 49, 12531259.Google Scholar
FAOSTAT (2011). FAOSTAT. Food and Agriculture Organization of the United Nations, Rome. Production: Crops: 2009, and Production: Commodities by Country: Mali: 2009. Available online at http://faostat.fao.org/site/567/default.aspx#ancor (verified 14 October 2011).Google Scholar
Fatondji, D., Pasternak, D. & Woltering, L. (2008). Watermelon production on stored rainwater in Sahelian sandy soils. African Journal of Plant Science 2, 151160.Google Scholar
Harlan, J. R. (1975). Our vanishing genetic resources. Science 188, 617621.Google Scholar
Idehen, E. O., Kehinde, O. B. & Adegbite, A. E. (2006). Somatic chromosome counts and yield performance of some accessions of egusi melon (Citrullus lanatus). African Journal of Biotechnology 5, 20492052.Google Scholar
Ikeorgu, J. E. G., Ezumah, H. C. & Wahua, T. A. T. (1989). Productivity of species in cassava/maize/okra/egusi melon complex mixtures in Nigeria. Field Crops Research 21, 17.CrossRefGoogle Scholar
Jensen, B. D., Touré, F. M., Hamattal, M. A., Touré, F. A. & Nantoumé, A. D. (2011). Watermelons in the sand of Sahara: Cultivation and use of indigenous landraces in the Tombouctou region of Mali. Ethnobotany Research and Applications 9, 151162.CrossRefGoogle Scholar
Li, Y., Ye, W., Wang, M. & Yan, X. (2009). Climate change and drought: a risk assessment of crop-yield impacts. Climate Research 39, 3146.Google Scholar
Liu, J., Fritz, S., van Wesenbeeck, C. F. A., Fuchs, M., You, L., Obersteiner, M. & Yang, H. (2008). A spatially explicit assessment of current and future hotspots of hunger in sub-Saharan Africa in the context of global change. Global and Planetary Change 64, 222235.Google Scholar
Loukou, A. L., Gnakri, D., Djè, Y., Kippré, A. V., Malice, M., Baudoin, J.-P. & Zoro Bi, I. A. (2007). Macronutrient composition of three cucurbit species cultivated for seed consumption in Côte d'Ivoire. African Journal of Biotechnology 6, 529533.Google Scholar
Maggs-Kölling, G. L. & Christiansen, J. L. (2003). Variability in Namibian landraces of watermelon (Citrullus lanatus). Euphytica 132, 251258.CrossRefGoogle Scholar
Olaniyi, J. O. & Fagbayide, J. A. (2008). Growth and seed yield response of egusi melon to nitrogen and phosphorus fertilizers application. American-Eurasian Journal of Agricultural and Environmental Sciences 4, 707712.Google Scholar
Peltonen-Sainio, P., Rajala, A. & Jauhiainen, L. (2011). Hidden viability risks in the use of farm-saved small-grain seed. The Journal of Agricultural Science, Cambridge 149, 713724.Google Scholar
Raiger, H. L., Dua, R. P., Sharma, S. K., Phogat, B. S. & Rathi, R. S. (2009). Stability for seed yield and quality traits in kalingada (Citrullus lanatus). Indian Journal of Agricultural Sciences 79, 745747.Google Scholar
Robinson, R. W. & Decker-Walters, D. S. (1997). Cucurbits. Crop Production Science in Horticulture no. 6. Wallingford, UK: CAB International.Google Scholar
Schmidhuber, J. & Tubiello, F. N. (2007). Global food security under climate change. Proceedings of the National Academy of Sciences of the United States of America 104, 1970319708.Google Scholar
Szamosi, C., Solmaz, I., Sari, N. & Bársony, C. (2009). Morphological characterization of Hungarian and Turkish watermelon (Citrullus lanatus (Thunb.) Matsum. et Nakai) genetic resources. Genetic Resources and Crop Evolution 56, 10911105.Google Scholar
Thompson, H. E., Berrang-Ford, L. & Ford, J. D. (2010). Climate change and food security in sub-Saharan Africa: a systematic literature review. Sustainability 2, 27192733.CrossRefGoogle Scholar
Thornton, P. K., Jones, P. G., Ericksen, P. J. & Challinor, A. J. (2011). Agriculture and food systems in sub-Saharan Africa in a 4 °C+ world. Philosophical Transactions of the Royal Society A 369, 117136.Google Scholar
UPOV (2004). Watermelon. (Citrullus lanatus (Thunb.) Matsum. et Nakai) . Guidelines for the Conduct of Tests for Distinctness, Uniformity and Stability. TG/142/4. Geneva, Switzerland: International Union for the Protection of new Varieties of Plants.Google Scholar
van Der Vossen, H. A. M., Denton, O. A. & EL Tahir, I. M. (2004). Citrullus lanatus (Thunb.) Matsum. & Nakai. In Plant Resources of Tropical Africa (PROTA) 2. Vegetables (Eds Grubben, G. J. H. & Denton, O. A.), pp. 185191. Wageningen/Leiden, The Netherlands: PROTA Foundation/Backhuys Publishers, CTA.Google Scholar
Villa, T. C. C., Maxted, N., Scholten, M. & Ford-Lloyd, B. (2005). Defining and identifying crop landraces. Plant Genetic Resources: Characterization and Utilization 3, 373384.CrossRefGoogle Scholar
Wasylikowa, K. & van Der Veen, M. (2004). An archaeobotanical contribution to the history of watermelon, Citrullus lanatus (Thunb.) Matsum. & Nakai (syn. C. vulgaris Schrad.). Vegetation History and Archaeobotany 13, 213217.Google Scholar
WMO (2011). Weather information for Tombouctou, Mali. In World Weather Information Service. Hong Kong: World Meteorological Organization. Available online at: http://worldweather.wmo.int/034/c00134.htm (verified 26 August 2011).Google Scholar
Yang, S-L. & Walters, T. W. (1992). Ethnobotany and the economic role of the Cucurbitaceae of China. Economic Botany 46, 349367.Google Scholar
Yusuf, O., Sanni, S. A., Ojuekaiye, E. O. & Ugbabe, O. O. (2008). Profitability of egusi melon (Citrullus lanatus Thunb. Mansf) production under sole and mixed cropping systems in Kogi state, Nigeria. Journal of Agricultural and Biological Science 3, 1418.Google Scholar
Zeven, A. C. (1998). Landraces: A review of definitions and classifications. Euphytica 104, 127139.Google Scholar