Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-18T12:54:26.589Z Has data issue: false hasContentIssue false

Performance of crossbred dairy Friesian calves fed two levels of Saccharomyces cerevisiae: intake, digestion, ruminal fermentation, blood parameters and faecal pathogenic bacteria

Published online by Cambridge University Press:  11 October 2016

A. A. HASSAN
Affiliation:
Animal Production Research Institute, Ministry of Agriculture, Dokki, Giza, Egypt
A. Z. M. SALEM*
Affiliation:
Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México
A. E. KHOLIF
Affiliation:
Dairy Science Department, National Research Centre, 33 Bohouth St. Dokki, Giza, Egypt
M. SAMIR
Affiliation:
Animal Production Research Institute, Ministry of Agriculture, Dokki, Giza, Egypt
M. H. YACOUT
Affiliation:
Animal Production Research Institute, Ministry of Agriculture, Dokki, Giza, Egypt
S. H. ABU HAFSA
Affiliation:
Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab, P. O. Box: 21934 Alexandria, Egypt
G. D. MENDOZA
Affiliation:
Universidad Autónoma Metropolitana, Unidad Xochimilco, México
M. M. Y. ELGHANDOUR
Affiliation:
Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México
M. AYALA
Affiliation:
Universidad Autónoma del Estado de Hidalgo, Instituto de Ciencias Agropecuarias, Área Académica de Medicina Veterinaria y Zootecnia, Rancho Universitario Av. Universidad Km 1 Ex-Hda de Aquetzalpa, A.P. 32, CP 43600, México
S. LOPEZ
Affiliation:
Departamento de Producción Animal, Instituto de Ganadería de Montaña (IGM) CSIC-Universidad de León, Universidad de León, E-24071 León, Spain
*
*To whom all correspondence should be addressed. Email: asalem70@yahoo.com

Summary

The effect of feeding two levels of Saccharomyces cerevisiae on the performance of crossbred Friesian calves was investigated. Twenty-four neonatal male Friesian × Baladi calves (35·5 ± 0·25 kg of initial body weight) were randomly assigned in a completely randomized design into three experimental groups for 90 days (eight calves per group). Calves fed their diets without yeast (S. cerevisiae) were considered as Control, while the diets of other calves were supplemented daily either with 2·5 g (YL diet) or with 5 g (YH diet) of yeast per calf. Calves fed the YH diet showed increased feed intake, while dry matter and fibre digestibilities were increased in calves fed YH and YL diets. Calves fed YL and YH diets showed lower ruminal ammonia-N and higher total volatile fatty acids, acetate and propionate concentrations than Control calves. Both YH and YL calves showed increased plasma concentrations of total protein, globulin and glucose and decreased cholesterol and triglycerides concentrations. Calves’ final weight and daily gain were increased with S. cerevisiae yeast supplemented diets. After 42 days of experiment, Clostridium spp., Escherichia coli and Enterobacteria spp. counts were down to undetectable levels in the faeces of calves fed S. cerevisiae additive. It could be concluded that adding S. cerevisiae to milk-fed calves increased feed utilization and improved pre-weaned calf performance and health status, reducing faecal pathogenic bacteria.

Type
Animal Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agarwal, N., Kamra, D. N., Chaudhary, L. C., Agarwal, I., Sahoo, A. & Pathak, N. N. (2002). Microbial status and rumen enzyme profile of crossbred calves fed on different microbial feed additives. Letters in Applied Microbiology 34, 329336.Google Scholar
Ahmed, M. H., Elghandour, M. M. Y., Salem, A. Z. M., Zeweil, H. S., Kholif, A. E., Klieve, A. V. & Abdelrassol, A. M. A. (2015). Influence of Trichoderma reesei or Saccharomyces cerevisiae on performance, ruminal fermentation, carcass characteristics and blood biochemistry of lambs fed Atriplex nummularia and Acacia saligna mixture. Livestock Science 180, 9097.Google Scholar
Al Ibrahim, R. M., Kelly, A. K., O'Grady, L., Gath, V. P., McCarney, C. & Mulligan, F. J. (2010). The effect of body condition score at calving and supplementation with Saccharomyces cerevisiae on milk production, metabolic status, and rumen fermentation of dairy cows in early lactation. Journal of Dairy Science 93, 53185328.CrossRefGoogle ScholarPubMed
Annison, E. F. (1954). Some observations on volatile fatty acids in the sheep's rumen. Biochemical Journal 57, 400405.Google Scholar
AOAC (1997). Official Methods of Analysis of the Association of Official Analytical Chemist, Vol. 1, 16th edn, Washington, DC: Association of Official Analytical Chemists.Google Scholar
Bach, S. J., McAllister, T. A., Veira, D. M., Gannon, V. P. J. & Holley, R. A. (2003). Effects of a Saccharomyces cerevisiae feed supplement on Escherichia coli O157:H7 in ruminal fluid in vitro . Animal Feed Science and Technology 104, 179189.Google Scholar
Cedillo, J., Vázquez-Armijo, J. F., González-Reyna, A., Salem, A. Z. M., Kholif, A. E., Hernández-Meléndez, J., Martínez-González, J. C., De Oca Jiménez, R. M., Rivero, N. & López, D. (2014). Effects of different doses of Salix babylonica extract on growth performance and diet in vitro gas production in Pelibuey growing lambs. Italian Journal of Animal Science 13, 609613. Available from: http://dx.doi.org/10.4081/ijas.2014.3165.CrossRefGoogle Scholar
Chaucheyras-Durand, F. & Fonty, G. (2001). Establishment of cellulolytic bacteria and development of fermentative activities in the rumen of gnotobiotically-reared lambs receiving the microbial additive Saccharomyces cerevisiae CNCM I-1077. Reproduction, Nutrition, Development 41, 5768.Google Scholar
Chaucheyras-Durand, F. & Fonty, G. (2002). Influence of a probiotic yeast (Saccharomyces cerevisiae CNCM I-1077) on microbial colonization and fermentations in the rumen of newborn lambs. Microbial Ecology in Health and Disease 14, 3036.CrossRefGoogle Scholar
Chaucheyras-Durand, F., Masséglia, S. & Fonty, G. (2005). Effect of the microbial feed additive Saccharomyces cerevisiae CNCM I-1077 on protein and peptide degrading activities of rumen bacteria grown in vitro . Current Microbiology 50, 96101.Google Scholar
Chaucheyras-Durand, F., Walker, N. D. & Bach, A. (2008). Effects of active dry yeasts on the rumen microbial ecosystem: past, present and future. Animal Feed Science and Technology 145, 526.Google Scholar
Elghandour, M. M. Y., Salem, A. Z. M., Martínez Castañeda, J. S., Camacho, L. M., Kholif, A. E. & Vázquez Chagoyán, J. C. (2015). Direct-fed microbes: a tool for improving the utilization of low quality roughages in ruminants. Journal of Integrative Agriculture 14, 526533.Google Scholar
Enjalbert, F., Garrett, J. E., Moncoulon, R., Bayourthe, C. & Chicoteau, P. (1999). Effects of yeast culture (Saccharomyces cerevisiae) on ruminal digestion in non-lactating dairy cows. Animal Feed Science and Technology 76, 195206.Google Scholar
Erasmus, L. J., Botha, P. M. & Kistner, A. (1992). Effect of yeast culture supplement on production, rumen fermentation, and duodenal nitrogen flow in dairy cows. Journal of Dairy Science 75, 30563065.Google Scholar
FASS (2010). Guide for the Care and Use of Agricultural Animals in Agricultural Research and Teaching, 3rd edn. Champaign, IL, USA: Federation of Animal Science Society.Google Scholar
Ferret, A., Plaixats, J., Caja, G. & Gasa, J., Prió, P. (1999). Using markers to estimate apparent dry matter digestibility, faecal output and dry matter intake in dairy ewes fed Italian ryegrass hay or alfalfa hay. Small Ruminant Research 33, 145152.Google Scholar
Galip, N. (2006). Effect of supplemental yeast culture and sodium bicarbonate on ruminal fermentation and blood variables in rams. Journal of Animal Physiology and Animal Nutrition 90, 446452.Google Scholar
Galvão, K. N., Santos, J. E. P., Coscioni, A., Villaseñor, M., Sischo, W. M. & Berge, A. C. B. (2005). Effect of feeding live yeast products to calves with failure of passive transfer on performance and patterns of antibiotic resistance in fecal Escherichia coli . Reproduction, Nutrition, Development 45, 427440.CrossRefGoogle ScholarPubMed
García-González, R., López, S., Fernández, M., Bodas, R. & González, J. S. (2008). Screening the activity of plants and spices for decreasing ruminal methane production in vitro . Animal Feed Science and Technology 147, 3652.Google Scholar
Gedek, B. R. (1999). Adherence of Escherichia coli serogroup 0 157 and the Salmonella typhimurium mutant DT 104 to the surface of Saccharomyces boulardii . Mycoses 42, 261264.Google Scholar
Guedes, C. M., Gonçalves, D., Rodrigues, M. A. M. & Dias-Da-Silva, A. (2008). Effects of a Saccharomyces cerevisiae yeast on ruminal fermentation and fibre degradation of maize silages in cows. Animal Feed Science and Technology 145, 2740.Google Scholar
Hammon, H. M., Schiessler, G., Nussbaum, A. & Blum, J. W. (2002). Feed intake patterns, growth performance, and metabolic and endocrine traits in calves fed unlimited amounts of colostrum and milk by automate, starting in the neonatal period. Journal of Dairy Science 85, 33523362.Google Scholar
Harrison, G. A., Hemken, R. W., Dawson, K. A., Harmon, R. J. & Barker, K. B. (1988). Influence of addition of yeast culture supplement to diets of lactating cows on ruminal fermentation and microbial population. Journal of Dairy Science 71, 29672975.Google Scholar
Issakowicz, J., Bueno, M. S., Sampaio, A. C. K. & Duarte, K. M. R. (2013). Effect of concentrate level and live yeast (Saccharomyces cerevisiae) supplementation on Texel lamb performance and carcass characteristics. Livestock Science 155, 4452.CrossRefGoogle Scholar
Jensen, G. S., Hart, A. N. & Schauss, A. G. (2007). An anti-inflammatory immunogen from yeast culture induces activation and alters chemokine receptor expression on human natural killer cells and B lymphocytes in vitro . Nutrition Research 27, 327335.Google Scholar
Kamal, R., Dutt, T., Singh, S., Kamra, D. N., Patel, M., Choudhary, L. C., Agarwal, N., Kumar, S. & Islam, M. (2013). Effect of live Saccharomyces cerevisiae (NCDC-49) supplementation on growth performance and rumen fermentation pattern in local goat. Journal of Applied Animal Research 41, 285288.Google Scholar
Kholif, A. E., Gouda, G. A., Morsy, T. A., Salem, A. Z. M., Lopez, S. & Kholif, A. M. (2015). Moringa oleifera leaf meal as a protein source in lactating goat's diets: feed intake, digestibility, ruminal fermentation, milk yield and composition, and its fatty acids profile. Small Ruminant Research 129, 129137.Google Scholar
Koul, V., Kumar, U., Sareen, V. K. & Singh, S. (1998). Mode of action of yeast culture (Yea-Sacc 1026) for stimulation of rumen fermentation in buffalo calves. Journal of the Science of Food and Agriculture 77, 407413.Google Scholar
Kowalik, B., Skomiał, J., Pająk, J. J., Taciak, M., Majewska, M. & Bełżecki, G. (2012). Population of ciliates, rumen fermentation indicators and biochemical parameters of blood serum in heifers fed diets supplemented with yeast (Saccharomyces cerevisiae) preparation. Animal Science Papers & Reports 30, 329338.Google Scholar
Kung, L. Jr., Kreck, E. M., Tung, R. S., Hession, A. O., Sheperd, A. C., Cohen, M. A., Swain, H. E. & Leedle, J. A. Z. (1997). Effects of a live yeast culture and enzymes on in vitro ruminal fermentation and milk production of dairy cows. Journal of Dairy Science 80, 20452051.Google Scholar
Langford, F. M., Weary, D. M. & Fisher, L. (2003). Antibiotic resistance in gut bacteria from dairy calves: a dose response to the level of antibiotics fed in milk. Journal of Dairy Science 86, 39633966.Google Scholar
Lesmeister, K. E., Heinrichs, A. J. & Gabler, M. T. (2004). Effects of supplemental yeast (Saccharomyces cerevisiae) culture on rumen development, growth characteristics, and blood parameters in neonatal dairy calves. Journal of Dairy Science 87, 18321839.Google Scholar
Magalhães, V. J. A., Susca, F., Lima, F. S., Branco, A. F., Yoon, I. & Santos, J. E. P. (2008). Effect of feeding yeast culture on performance, health, and immunocompetence of dairy calves. Journal of Dairy Science 91, 14971509.Google Scholar
Morsy, T. A., Kholif, A. E., Kholif, S. M., Kholif, A. M., Sun, X. & Salem, A. Z. M. (2016). Effects of two enzyme feed additives on digestion and milk production in lactating Egyptian buffaloes. Annals of Animal Science 16, 209222.Google Scholar
Murphy, E. A., Davis, J. M., Brown, A. S., Carmichael, M. D., Ghaffar, A. & Mayer, E. P. (2007). Oat β-glucan effects on neutrophil respiratory burst activity following exercise. Medicine & Science in Sports & Exercise 39, 639644.CrossRefGoogle ScholarPubMed
National Research Council (2001). Nutrient Requirements of Dairy Cattle, 7th revised edn. Washington, DC: The National Academy Press.Google Scholar
Newbold, C. J., Wallace, R. J. & McIntosh, F. M. (1996). Mode of action of the yeast Saccharomyces cerevisiae as a feed additive for ruminants. British Journal of Nutrition 76, 249261.Google Scholar
Newman, K. E. (1994). Mannan-oligosaccharides: Natural polymers with significant impact on the gastrointestinal microflora and the immune system. In Proceedings of Alltech's 10th Annual Symposium (Eds Lyons, T. P. & Jacques, K. A.), pp. 167174. Nottingham, UK: Nottingham University Press.Google Scholar
Nicolosi, R., Bell, S. J., Bistrian, B. R., Greenberg, I., Forse, R. A. & Blackburn, G. L. (1999). Plasma lipid changes after supplementation with β-glucan fiber from yeast. American Journal of Clinical Nutrition 70, 208212.Google Scholar
Oxoid (1985). Oxoid Manual of Dehydrated Culture Media, Ingredients and other Laboratory Services. Basingstoke, UK: Oxoid.Google Scholar
Pal, K., Paul, S. K., Bhunia, T., Pakhira, M. C., Biswas, P. & Patra, A. K. (2010). Responses of addition of yeast (Saccharomyces cerevisiae) from rice distillers grains with solubles with or without trace minerals on the performance of Black Bengal kids. Small Ruminant Research 94, 4552.Google Scholar
Patra, A. K. (2012). The use of live yeast products as microbial feed additives in ruminant nutrition. Asian Journal of Animal and Veterinary Advances 7, 366375.Google Scholar
Phillips, I., Casewell, M., Cox, T., De Groot, B., Friis, C., Jones, R., Nightingale, C., Preston, R. & Waddell, J. (2004). Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. Journal of Antimicrobial Chemotherapy 53, 2852.Google Scholar
Pysera, B. & Opałka, A. (2001). Lipids and lipoproteins in blood serum of calves receiving Yea-Sacc1026 dietary supplement. Journal of Animal and Feed Sciences 10, 7782.Google Scholar
Reed, G. & Nagodawithana, T. (1991). Yeast Technology, 2nd edn. New York, NY: AVI, Van Nostrand Reinhold Publ.Google Scholar
Rojo, R., Kholif, A. E., Salem, A. Z. M., Elghandour, M. M. Y., Odongo, N. E., Montes De Oca, R., Rivero, N. & Alonso, M. U. (2015). Influence of cellulase addition to dairy goat diets on digestion and fermentation, milk production and fatty acid content. Journal of Agricultural Science, Cambridge 153, 15141523.Google Scholar
Russell, J. B. & Houlihan, A. J. (2003). Ionophore resistance of ruminal bacteria and its potential impact on human health. FEMS Microbiology Reviews 27, 6574.Google Scholar
Salem, A. Z. M., Ryena, A. G., Elghandour, M. M. Y., Camacho, L. M., Kholif, A. E., Salazar, M. C., Domínguez, I. A., Jiménez, R. M., Almaraz, E. M., Martínez, A. G. L. & Mariezcurrena, M. A. (2014). Influence of Salix babylonica extract in combination or not with increasing levels of minerals mixture on in vitro rumen gas production kinetics of a total mixed ration. Italian Journal of Animal Science 13, 873879.Google Scholar
Suzuki, T., Tanaka, H., Kinoshita, A., Oikawa, S., Osawa, M. & Yadomae, T. (1990). Effect of orally administered β-glucan in macrophage function in mice. International Journal of Immunopharmacology 12, 675684.Google Scholar
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.Google Scholar
Williams, P. E., Tait, C. A., Innes, G. M. & Newbold, C. J. (1991). Effects of the inclusion of yeast culture (Saccharomyces cerevisiae plus growth medium) in the diet of dairy cows on milk yield and forage degradation and fermentation patterns in the rumen of steers. Journal of Animal Science 69, 30163026.Google Scholar
Yoon, I. K. & Stern, M. D. (1995). Influence of direct-fed microbials on ruminal microbial fermentation and performance of ruminants: a review. Asian-Australasian Journal of Animal Sciences 8, 533555.Google Scholar
Zhao, T., Doyle, M. P., Harmon, B. G., Brown, C. A., Mueller, P. O. E. & Parks, A. H. (1998). Reduction of carriage of enterohemorrhagic Escherichia coli O157:H7 in cattle by inoculation with probiotic bacteria. Journal of Clinical Microbiology 36, 641647.Google Scholar