Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-18T07:53:32.408Z Has data issue: false hasContentIssue false

The relation between respiratory rate and heart rate in the calf subjected to severe heat stress

Published online by Cambridge University Press:  27 March 2009

W. Bianca
Affiliation:
The Hannah Dairy Research Institute, Kirkhill, Ayr

Extract

1. In experiments on three calves it was shown that, under severe heat stress, the respiratory rate at first rapidly rose from 88 to a maximum of 218 respirations/min. and then fell to 167 respirations/min., while breathing at first became shallower and then deeper.

2. During the phase in which breathing became faster and shallower (panting), the heart rate rose at a mean rate of 13 beats/min. for each degree centigrade increase in rectal temperature. During the phase in which breathing became slower and deeper (‘second-phase breathing’) the mean rate of rise in heart rate was 50 beats/min. for each degree increase in rectal temperature.

3. The changes in respiratory rate and in heart rate occurred at mean rectal temperatures of 40·6 and 41·0° C., respectively, and, on average, the change in respiratory rate preceded that in heart rate by 8 min.

4. It is concluded that second-phase breathing was the cause of the steep increase in heart rate.

5. The steep increase in heart rate is discussed in relation to heat production of the respiratory muscles.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1958

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anrep, G. V., Pascual, W. & Rössler, R. (1936). Proc. Roy. Soc. B, 119, 191.Google Scholar
Badeer, H. (1951). Amer. J. Physiol. 167, 76.CrossRefGoogle Scholar
Beakley, W. R. & Findlay, J. D. (1955 a). J. Agric. Sci. 45, 452.CrossRefGoogle Scholar
Beakley, W. R. & Findlay, J. D. (1955 b). J. Agric. Sci. 45, 461.CrossRefGoogle Scholar
Beakley, W. R. & Findlay, J. D. (1955 c). J. Agric. Sci. 45, 339.CrossRefGoogle Scholar
Beakley, W. R. & Findlay, J. D. (1955 d). J. Agric. Sci. 45, 353.CrossRefGoogle Scholar
Benedict, G. & Cathcart, E. P. (1913). Cited by Reid J. M., in Arch, intern. Med. 1924, 34, 453.Google Scholar
Berggren, G. & Christensen, E. H. (1950). Arbeitsphysiologie, 14, 255.Google Scholar
Bianca, W. (1955). J. Agric. Sci. 45, 428.CrossRefGoogle Scholar
Bianca, W. (1957). Brit. Vet. J. 113, 227.CrossRefGoogle Scholar
Blaxter, K. L. (1948). J. Agric. Sci. 38, 207.CrossRefGoogle Scholar
Blaxter, K. L. & Wood, W. A. (1951). Brit. J. Nutrit. 5, 29.CrossRefGoogle Scholar
Dale, H. E. & Brody, S. (1954). Res. Bull. Mo. Agric. Exp. Sta. no. 562, 1.Google Scholar
Dill, D. B. (1942). Amer. Heart J. 23 (4), 441.CrossRefGoogle Scholar
Findlay, J. D. (1957). J. Physiol. 136, 300.CrossRefGoogle Scholar
Irving, L., Peyton, L. J. & Monson, M. (1956). J. Appl. Physiol. 9, 421.CrossRefGoogle Scholar
Kibler, H. H. & Brody, S. (1949). Res. Bull. Mo. Agric. Exp. Sta. no. 450, 1.Google Scholar
Knowlton, F. P. & Starling, E. H. (1912). J. Physiol. 44, 206.CrossRefGoogle Scholar
Landsteiner, E. K. & Hayes, M. (1943). Amer. J. Physiol. 140, 256.CrossRefGoogle Scholar
Reid, Marion J. (1924). Arch. intern. Med. 34, 453.CrossRefGoogle Scholar
Rothstein, A. & Towbin, E. J. (1947). Physiology of Man in the Desert. New York: Interscience Publishers, Inc.Google Scholar
Roy, J. H. B., Huffman, C. F. & Reineke, E. P. (1957). Brit. J. Nutrit. 11, 373.CrossRefGoogle Scholar
Shephard, R. J. (1955). J. Physiol. 129, 393.CrossRefGoogle Scholar