Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T12:14:05.445Z Has data issue: false hasContentIssue false

Application of genetics and genomics to aquaculture development: current and future directions

Published online by Cambridge University Press:  22 December 2010

B. McANDREW*
Affiliation:
Genetics and Reproduction Research Group, Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK
J. NAPIER
Affiliation:
Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts Al5 2JQ, UK
*
*To whom all correspondence should be addressed. Email: b.j.mcandrew@stir.ac.uk

Summary

Global aquaculture production continues to grow rapidly yet a small proportion of the animals and plants being used come from managed breeding and improvement programmes. The biology of aquatic organisms offer many opportunities for rapid genetic gains as new genetic and genomic techniques make the management of improvement programmes feasible in a wider range of species. The current paper describes the application of a wide range of techniques, many unique to aquatic organisms, and their potential to secure aquaculture production in the future.

Type
Foresight Project on Global Food and Farming Futures
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbadi, A., Domergue, F., Bauer, J., Napier, J. A., Welti, R., Zähringer, U., Cirpus, P. & Heinz, E. (2004). Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell 16, 27342748.CrossRefGoogle ScholarPubMed
Acosta, B. O. & Gupta, M. V. (2010). The genetic improvement of farmed tilapias project: impact and lessons learned. In Success Stories in Asian Aquaculture (Eds De Silva, S. S. & Davy, F. B.), pp. 149171. Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
Bartley, D. M., Rana, K. & Immink, A. J. (2001). The use of inter-specific hybrids in aquaculture and fisheries. Reviews in Fish Biology and Fisheries 10, 325337.Google Scholar
Basavaraju, Y., Mair, G. C., Mohan Kumar, H. M., Pradeep Kumar, S., Keshavappa, G. Y. & Penman, D. J. (2002). An evaluation of triploidy as a potential solution to the problem of precocious sexual maturation in common carp Cyprinus carpio, in Karnataka, India. Aquaculture 204, 407418.CrossRefGoogle Scholar
Beveridge, M. C. M. & McAndrew, B. J. (2000). Tilapia: Biology and Exploitation. Dordrecht, The Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
Bongers, A. B. J., Bovenhuis, H., Van Stokkom, A. C., Wiegertjes, G. F., Zandieh-Doulabi, B., Komen, J. & Richter, C. J. J. (1997). Distribution of genetic variance in gynogenetic or androgenetic families. Aquaculture 153, 225238.CrossRefGoogle Scholar
Brem, G., Brenig, B., Horstgen-Schwark, G. & Winnacker, E. L. (1988). Gene transfer in tilapia (Oreochromis niloticus). Aquaculture 68, 209219.CrossRefGoogle Scholar
Brown, R. C., Woolliams, J. A. & McAndrew, B. J. (2005). Factors influencing effective population size in commercial populations of gilthead seabream, Sparus aurata. Aquaculture 247, 219225.Google Scholar
Bye, V. J. & Lincoln, R. F. (1986). Commercial methods for the control of sexual maturation in rainbow trout (Salmo gairdneri R.). Aquaculture 57, 299309.CrossRefGoogle Scholar
Cal, R. M., Vidal, S., Martinez, P., Alvarez-Blazquez, B., Gomez, C. & Piferrer, F. (2006). Growth and gonadal development of gynogenetic diploid Scophthalmus maximus. Journal of Fish Biology, 68, 401413.Google Scholar
Cheng, B., Wu, G., Vrinten, P., Falk, K., Bauer, J. & Qiu, X. (2010). Towards the production of high levels of eicosapentaenoic acid in transgenic plants: the effects of different host species, genes and promoters. Transgenic Research 19, 221229.CrossRefGoogle ScholarPubMed
Cook, J. T., McNiven, M. A., Richardson, G. F. & Sutterlin, A. M. (2000). Growth rate, body composition and feed digestibility/conversion of growth enhanced transgenic Atlantic salmon (Salmo salar). Aquaculture 188, 1532.CrossRefGoogle Scholar
Cunningham, C., Hikima, J. I., Jenny, M. J., Chapman, R. W., Fang, G. C., Saski, C., Lundqvist, M. L., Wing, R. A., Cupit, P. M., Gross, P. S., Warr, G. W. & Tomkins, J. P. (2006). New resources for marine genomics: Bacterial artificial chromosome libraries for the eastern and pacific oysters (Crassostrea virginica and C. gigas). Marine Biotechnology 8, 521533.CrossRefGoogle ScholarPubMed
Danzmann, R. G. & Gharbi, K. (2007). Linkage mapping in aquaculture species. In Aquaculture Genome Technologies (Ed. Liu, Z. J.), pp. 139167. Oxford, UK: Blackwell Publishing.Google Scholar
Davidson, W. S. (2007). Bacterial Artificial Chromosome Libraries and BAC based physical mapping of aquaculture genomes. In Aquaculture Genome Technologies (Ed. Liu, Z. J.), pp. 245259. Oxford, UK: Blackwell Publishing.Google Scholar
De-Santis, C. & Jerry, D. R. (2007). Candidate growth genes in finfish – where should we be looking? Aquaculture 272, 2238.CrossRefGoogle Scholar
Devlin, R. H. (1997). Transgenic salmonids. In Transgenic Animals: Generation and Use (Ed. Houdebine, L. M.), pp. 105117. Amsterdam, The Netherlands Harwood Academic Publishers.Google Scholar
Devlin, R. H., Biagi, C. A., Yesaki, T. Y., Smailus, D. E. & Byatt, J. C. (2001). Growth of domesticated transgenic fish. Nature 409, 781782.CrossRefGoogle ScholarPubMed
Devlin, R. H., Yesaki, T. Y., Donaldson, E. M., Du, S.-J. & Hew, C. L. (1995). Production of germline transgenic Pacific salmonids with dramatically increased growth performance. Canadian Journal of Fisheries and Aquatic Sciences 52, 13761384.CrossRefGoogle Scholar
Du, S. J., Gong, Z., Fletcher, G. L., Shears, M. A., King, M. J., Idler, D. R. & Hew, C. L. (1992). Growth enhancement in transgenic Atlantic salmon by the use of an ‘all fish’ chimeric growth hormone gene construct. Nature Biotechnology 10, 176181.CrossRefGoogle ScholarPubMed
Dunham, R. A. (2004). Aquaculture and Fisheries Biotechnology: Genetic Approaches. Wallingford, UK: CABI.Google Scholar
Dunham, R. A. & Devlin, R. (1998). Comparison of traditional breeding and transgenesis in farmed fish with implications for growth enhancement and fitness. In Transgenic Animals in Agriculture (Ed. Murray, J. D., Anderson, G. B., Oberbauer, A. M. & McGloughlin, M. M.), pp. 209229. Wallingford UK: CABI.Google Scholar
Dunham, R. A., Eash, J., Askins, J. & Townes, T. M. (1987). Transfer of metallothionein-human growth hormone fusion gene into channel catfish. Transactions of the American Fisheries Society 116, 8791.2.0.CO;2>CrossRefGoogle Scholar
Dunham, R. A., Ramboux, A. C., Duncan, P. L., Hayat, M., Chen, T. T., Lin, C. M.Gonzalez-Villasenor, L. I. & Powers, D. A. (1992). Transfer, expression and inheritance of salmonid growth hormone in channel catfish, Ictalurus punctatus, and effects on performance traits. Molecular Marine Biology and Biotechnology 1, 380389.Google ScholarPubMed
Eckert, H., La Vallee, B., Schweiger, B. J., Kinney, A. J., Cahoon, E. B. & Clemente, T. (2006). Co-expression of the borage Delta 6 desaturase and the Arabidopsis Delta 15 desaturase results in high accumulation of stearidonic acid in the seeds of transgenic soybean. Planta 224, 10501057.Google Scholar
Ewart, K. V., Belanger, J. C., Williams, J., Karakach, T., Penny, S., Tsoi, S. C. M., Richards, R. C. & Douglas, S. E. (2005). Identification of genes differentially expressed in Atlantic salmon (Salmo salar) in response to infection by Aeromonas salmonicida using cDNA microarray technology. Developmental and Comparative Immunology 29, 333347.CrossRefGoogle ScholarPubMed
FAO (2009). Fisheries Statistics – Aquaculture Production. Available online at http://www.fao.org/fi/statist/FISOFT/FISHPLUS.asp (verified 15 October 2010).Google Scholar
Fast, M. D., Ross, N. W., Muise, D. M. & Johnson, S. C. (2006). Differential Gene Expression in Atlantic Salmon infected with Lepeophtheirus salmonis. Journal of Aquatic Animal Health 18, 116127.CrossRefGoogle Scholar
Gall, G. A. E. & Huang, N. (1988). Heritability and selection schemes for rainbow trout: Female reproductive performance. Aquaculture 73, 5766.Google Scholar
GenoMar. (2008). Trapia: Breeding Nucleus. Available online at: http://www.genomar.no/?did=9078117 (verified 15 October 2010).Google Scholar
Gjedrem, T. (1992). Breeding plans for rainbow trout. Aquaculture 100, 7383.Google Scholar
Gjedrem, T. (2005). Selection and Breeding Programs in Aquaculture. Berlin: Springer. ISBN-10 1-4020-3341-9. 364p.Google Scholar
Gjoen, H. M. & Bentsen, H. B. (1997). Past, present and future of genetic improvement in salmon aquaculture. ICES Journal of Marine Science 54, 10091014.Google Scholar
Glover, K. A. (2010). Forensic identification of fish farm escapees: the Norwegian experience. Aquaculture Environment Interactions 1, 110.CrossRefGoogle Scholar
Guo, X., DeBrosse, G. A. & Allen, S. K. Jr. (1996). All triploid Pacific oysters (Crassostrea gigas Thunberg) produced by mating tetraploids and diploids. Aquaculture 142, 149161.CrossRefGoogle Scholar
Haley, C. & de Koning, D. J. (2006). Genetical genomics in livestock: potentials and pitfalls. Animal Genetics 37, 1012.Google Scholar
Hayes, B. J., Gjuvsland, A. & Omholt, S. (2006). Power of QTL mapping experiments in commercial Atlantic salmon populations, exploiting linkage and linkage disequilibrium and effect of limited recombination in males. Heredity 97, 1926.CrossRefGoogle ScholarPubMed
He, L., Du, C., Li, Y., Scheuring, C. & Zhang, H-B. (2007). Construction of large-insert Bacterial Clone Libraries and their applications. In Aquaculture Genome Technologies (Ed. Liu, L. J.), pp. 215244. Oxford, UK: Blackwell Publishing.CrossRefGoogle Scholar
Henryon, M., Jokumsen, A., Berg, P., Lund, I., Pedersen, P. B., Olesen, N. J. & Slierendrecht, W. J. (2002). Genetic variation for growth rate, feed conversion efficiency, and disease resistance exists within a farmed population of rainbow trout. Aquaculture 209, 5976.CrossRefGoogle Scholar
Herlin, M., Delghandi, M., Wesmajervi, M., Taggart, J. B., McAndrew, B. J. & Penman, D. J. (2008). Analysis of the parental contribution to a group of fry from a single day of spawning from a commercial Atlantic cod (Gadus morhua) breeding tank. Aquaculture 274, 218224.CrossRefGoogle Scholar
Honglang, H. (2007). Freshwater fish seed resources in China. In Assessment of Freshwater Fish Seed Resources for Sustainable Aquaculture (Ed.Bondad-Reantaso, M. G.), pp. 185199. FAO Fisheries Technical Paper No. 501. Rome: FAO.Google Scholar
Houston, R. D., Haley, C. S., Hamilton, A., Guy, D. R., Tinch, A. E., Taggart, J. B., McAndrew, B. J. & Bishop, S. C. (2008). Major quantitative trait loci affect resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar). Genetics 178, 11091115.Google Scholar
Hulata, G., Wohlfarth, G. W., Karplus, I., Schroeder, G. L., Harpaz, S., Halevy, A., Rothbard, S., Cohen, S., Israel, I. & Kavessa, M. (1993). Evaluation of Oreochromis niloticus×O. arueus hybrid progeny of different geographical isolates, reared under varying management regimes. Aquaculture 115, 253271.Google Scholar
Hussain, M. G., Penman, D. J. & McAndrew, B. J. (1998). Production of heterozygous and homozygous clones in Nile tilapia. Aquaculture International 6, 197205.CrossRefGoogle Scholar
Jackson, T. R., Martin-Robichaud, D. J. & Reith, M. E., (2003). Application of DNA markers to the management of Atlantic halibut (Hippoglossus hippoglossus) broodstock. Aquaculture 220, 245259.Google Scholar
Katagiri, T., Asakawa, S., Minagawa, S., Shimixu, N., Hirono, I. & Aoki, T. (2001). Construction and characterization of BAC libraries for three fish species; rainbow trout, carp and tilapia. Animal Genetics 32, 200204.CrossRefGoogle ScholarPubMed
Katagiri, T., Kidd, C., Tomasino, E., Davis, J. T.Wishon, C., Stern, J. E., Calreton, K. L., Howe, A. E. & Kocher, T. D. (2005). A BAC based physical map of the Nile tilapia genome BMC Genomics 6, doi:10.1186/1471-2164-6-89.Google Scholar
Kause, A., Ritola, O., Paananen, T., Mäntysaari, E. & Eskelinen, U. (2003). Selection against early maturity in large rainbow trout Oncorhynchus mykiss: the quantitative genetics of sexual dimorphism and genotype-by-environment interactions. Aquaculture 228, 5368.Google Scholar
Kirpichnikov, V. S. (1981). Genetic Bases of Fish Selection. Berlin: Springer-Verlag.Google Scholar
Kocher, T. D.Lee, W-J., Sobolewska, H., Penman, D. J. & Mcandrew, B. J. (1998). A genetic linkage map of a cichlid fish, the tilapia (Oreochromis niloticus). Genetics 148, 12251232.Google Scholar
Komen, H. & Thorgaard, G. H. (2007). Androgenesis, gynogenesis and the production of clones in fishes: a review. Aquaculture 269, 150173.CrossRefGoogle Scholar
Korol, A.Shirak, A., Cnaani, A. & Hallerman, E. M. (2007). Detection and analysis of quantitative trait loci (QTL) for economic traits in Aquatic species. In Aquaculture Genome Technologies (Ed. Liu, L. J.), pp. 169187. Oxford, UK:Blackwell Publishing.CrossRefGoogle Scholar
Kozfkay, J. R., Dillon, J. C. & Schill, D. J. (2006). Routine use of sterile fish in salmonid sport fisheries: are we there yet? Fisheries 31, 392401.CrossRefGoogle Scholar
Krasnov, A., Koskinen, H., Pehkonen, P., Rexroad, C. E. III, Afanasyev, S. & Molsa, H. (2005). Gene expression in the brain and kidney of rainbow trout in response to handling stress. BMC Genomics 6, 3. doi: 10.1186/1471-2164-6-3.Google Scholar
Lande, R. & Thompson, R. (1990). Efficiency of marker assisted selection in improvement of quantitative traits. Genetics 124, 743756.Google Scholar
Lindenstrom, T., Sigh, J., Dalgaard, M. B. & Buchmann, K. (2006). Skin expression of IL-1 beta in East Atlantic salmon, Salmo salar L., highly susceptible to Gyrodactylus salaris infection is enhanced compared to a low susceptibility Baltic stock. Journal of Fish Diseases 29, 123128.Google Scholar
Liu, Z. J. (2009). Aquaculture Genome Technologies. Oxford, UK: Blackwell Publishing.Google Scholar
Liu, Z. J. & Cordes, J. (2004). DNA marker technology and their applications in aquaculture genetics. Aquaculture 238, 137.CrossRefGoogle Scholar
Mair, G. C., Nam, Y. K. & Solar, I. I. (2007). Risk management: Reducing risk through confinement of transgenic fish. In Environmental Risk Assessment of Genetically Modified Organisms. Vol. 3. Methodologies for Transgenic Fish (Eds Kapuscinski, A.R.Hayes, K. R., Li, S. & Dana, G.), pp. 209238. Wallingford, UK: CABI.CrossRefGoogle Scholar
MacKenzie, S., Iliev, D., Liarte, C., Koskinen, H., Planas, J. V., Goetz, F. W., Molsa, H.Krasnov, A. & Tort, L. (2006). Transcriptional analysis of LPS-stimulated activation of trout (Oncorhynchus mykiss) monocyte/macrophage cells in primary culture treated with cortisol. Molecular Immunology 43, 13401348.Google Scholar
Martin, S. A. M., Blaney, S. C., Houlihan, D. F. & Secombes, C. J. (2006). Transcriptome response following administration of a live bacterial vaccine in Atlantic salmon (Salmo salar). Molecular Immunology 43, 19001911.Google Scholar
Miller, M. R., Dunham, J. P., Amores, A., Cresko, W. A. & Johnson, E. A. (2007). Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Research 17, 240248.CrossRefGoogle ScholarPubMed
Moen, T., Baranski, M., Sonesson, A. K. & Kjøglum, S. (2009). Confirmation and fine-mapping of a major QTL for resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar): population-level associations between markers and trait. BMC Genomics 10, 368. doi:10.1186/1471-2164-10-368.CrossRefGoogle Scholar
Morrison, R. N., Cooper, G. A., Koop, B. F., Rise, M. L., Bridle, A. R., Adams, M. B. & Nowak, B. F. (2006). Transcriptome profiling of the gills of amoebic gill disease (AGD)-affected Atlantic salmon (Salmo salar): a role for the tumor suppressor protein p52 in AGD – pathogenesis? Physiological Genomics 26, 1534.Google Scholar
Müller-Belecke, A. & Hörstegen-Schwark, G. (1995). Sex determination in tilapia (Oreochromis niloticus) sex ratios in homozygous gynogenetic progeny and their offspring. Aquaculture 137, 5765.CrossRefGoogle Scholar
Myers, J. M., Hershberger, W. K. & Iwamoto, R. N. (1986). The induction of tetraploidy in salmonids. Journal of the World Aquaculture Society 17, 17.Google Scholar
Napier, J. A. & Graham, I. A. (2010). Tailoring plant lipid composition: designer oilseeds come of age. Current Opinion in Plant Biology 13, 330337.Google Scholar
Ng, S. H., Artieri, C. G., Bosdet, I. E., Chiu, R., Danzmann, R. G., Davidson, W. S., Ferguson, M. M., Fjell, C. D., Hoyheim, B., Jones, S. J., de Jong, P. J., Koop, B. F., Krzywinski, M. I., Lubieniecki, K., Marra, M. A., Mitchell, L. A., Mathewson, C., Osoegawa, K., Parisotto, S. E., Phillips, R. B., Rise, M. L., von Schalburg, K. R., Schein, J. E., Shin, H., Siddiqui, A., Thorsen, J., Wye, N., Yang, G. & Zhu, B. (2005). A physical map of the genome of Atlantic salmon (Salmo salar). Genomics 86, 396404.CrossRefGoogle ScholarPubMed
Norris, A. T., Bradley, D. G. & Cunningham, E. P. (2000). Parentage and relatedness determination in farmed Atlantic salmon (Salmo salar) using microsatellite markers. Aquaculture 182, 7383.Google Scholar
Penman, D. J., Beeching, A. J., Penn, S. & Maclean, N. (1990). Factors affecting survival and integration following microinjection of novel DNA into rainbow trout eggs. Aquaculture 85, 3550.CrossRefGoogle Scholar
Penman, D. J., Beeching, A. J., Penn, S., Rahman, A., Sulaiman, Z. & Maclean, N. (1991). Patterns of transgene inheritance in rainbow trout (Oncorhynchus mykiss). Molecular Reproduction and Development 30, 201206.Google Scholar
Penman, D. J., Gupta, M. V. & Dey, M. M. (2005). (eds). Carp Genetic Resources for Aquaculture in Asia. WorldFish Center Technical Report 65. Penang, Malaysia: WorldFish Center.Google Scholar
Pongthana, N., Penman, D. J., Baoprasertkul, P., Hussain, M. G., Islam, M. S., Powell, S. F. & McAndrew, B. J. (1999). Monosex female production in the silver barb (Puntius gonionotus Bleeker). Aquaculture 173, 246256.CrossRefGoogle Scholar
Purcell, M. K., Nichols, K. M., Winton, J. R., Kurath, G., Thorgaard, G. H., Wheeler, P., Hansen, J. D., Herwig, R. P. & Park, L. K. (2006). Comprehensive gene expression profiling following DNA vaccination of rainbow trout against infectious hematopoietic necrosis virus. Molecular Immunology 43, 20892106.CrossRefGoogle ScholarPubMed
Qi, B., Fraser, T., Mugford, S., Dobson, G., Sayanova, O., Butler, J., Napier, J. A., Stobart, A. K. & Lazarus, C. M. (2004). Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nature Biotechnology 22, 739745.Google Scholar
Quillet, E., Dorson, M., Le Guillou, S., Benmansour, A. & Boudinot, P. (2007). Wide range of susceptibility to rhabdoviruses in homozygous clones of rainbow trout. Fish and Shellfish Immunology 22, 510519.Google Scholar
Rahman, M. A. & Maclean, N. (1999). Growth performance in transgenic tilapia containing an exogenous piscine growth hormone gene. Aquaculture 173, 333346.Google Scholar
Rexroad, C. E. (2007). Radiation hybrid mapping in aquatic species. In Aquaculture Genome Technologies (Ed. Liud, Z. J.), pp. 313322. Oxford, UK: Blackwell Publishing.CrossRefGoogle Scholar
Rise, M. L., Jones, S. R., Brown, G. D., von Schalburg, K. R., Davidson, W. S. & Koop, B. F. (2004). Microarray analyses identify molecular biomarkers of Atlantic salmon macrophage and hematopoietic kidney response to Piscirickettsia salmonis infection. Physiological Genomics 20, 2135.Google Scholar
Rise, M. L., von Schalburg, K. R., Cooper, G. A. & Koop, B. F. (2007). Salmonid DNA microarrays and other tools for functional genomics research In Aquaculture Genome Technologies (Ed. Liud, Z. J.), pp. 369411. Oxford, UK: Blackwell Publishing.CrossRefGoogle Scholar
Robert, S. S., Singh, S. P., Zhou, X-R., Petrie, J. R., Blackburn, S. I., Mansour, P. M., Nichols, P. D., Liu, Q. & Green, A. G. (2005). Metabolic engineering of Arabidopsis to produce nutritionally important DHA in seed oil. Functional Plant Biology 32, 473479.Google Scholar
Ruiz-López, N., Haslam, R. P., Venegas-Calerón, M., Larson, T. R., Graham, I. A., Napier, J. A. & Sayanova, O. (2009). The synthesis and accumulation of stearidonic acid in transgenic plants: a novel source of ‘heart-healthy’ omega-3 fatty acids. Plant Biotechnology Journal 7, 704716.Google Scholar
Rutten, M. J. M., Komen, H. & Bovenhuis, H. (2005). Longitudinal genetic analysis of Nile tilapia (Oreochromis niloticus L.) body weight using a random regression model. Aquaculture 246, 101113.Google Scholar
Sarder, M. R. I., Penman, D. J., Myers, J. M. & McAndrew, B. J. (1999). Production and propagation of fully inbred clonal lines in the Nile tilapia (Oreochromis niloticus L.). Journal of Experimental Zoology 284, 675685.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Sarropoulou, E., Nousdili, D., Magoulas, A. & Kotoulas, G. (2008). Linking the genomes of nonmodel teleosts through comparative genomics. Marine Biotechnolnology 10, 227233.Google Scholar
Scheerer, P. D., Thorgaard, G. H., Allendorf, F. W. & Knudsen, K. L. (1986). Androgenetic rainbow trout produced from inbred and outbred sperm sources show similar survival. Aquaculture 57, 289298.Google Scholar
Senger, F., Priat, C., Hitte, C., Sarropoulou, E., Franch, R., Geisler, R., Bargelloni, L., Power, D. & Gailibert, F. (2006). The first radiation hybrid map of a perch like fish: the Gilthead seabream (Sparus aurata L.). Genomics 87, 793800.Google Scholar
Skaala, Ø., Wennevik, V. & Glover, K. A. (2006). Evidence of temporal genetic change in wild Atlantic salmon, Salmo salar L., populations affected by farm escapees. ICES Journal of Marine Science 63, 12241233.CrossRefGoogle Scholar
Smith, T. I. J. (1988). Aquaculture of striped bass and its hybrids in North America. Aquaculture Magazine 14, 4049.Google Scholar
Streisinger, G., Walker, C., Dower, N., Knauber, D. & Singer, F. (1981). Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291, 293296.CrossRefGoogle ScholarPubMed
Taggart, J. B., Bron, J. E., Martin, S. A. M., Seear, P. J., Høyheim, B., Talbot, R., Carmichael, S. N., Villeneuve, L. A. N., Sweeney, G. E., Houlihan, D. F., Secombes, C. J., Tocher, D. R. & Teale, A. J. (2008). A description of the origins, design and performance of the TRAITS–SGP Atlantic salmon Salmo salar L. cDNA microarray. Journal of Fish Biology 72, 20712094.CrossRefGoogle ScholarPubMed
Tautz, D. (1989). Hypervariability of simple sequences as a general source for polymotphic DNA markers. Nucleic Acids Research 17, 64636471.Google Scholar
Thorgaard, G. H., Scheerer, P. D., Hershberger, W. K. & Myers, J. M. (1990). Androgenetic rainbow trout produced using sperm from tetraploid males show improved survival. Aquaculture 85, 215221.Google Scholar
Vandeputte, M. (2009). Genetic improvement of common carp (Cyprinus carpio L.). Cahiers Agricultures 18, 256261.Google Scholar
Venegas-Calerón, M., Sayanova, O. & Napier, J. A. (2010). An alternative to fish oils: metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids. Progress in Lipid Research 49, 108119.Google Scholar
Vornanen, M., Hassinen, M., Koskinen, H. & Krasnov, A. (2005). Steady state effects of temperature acclimation on the transcriptome of the rainbow trout heart. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 289, 11771184.Google Scholar
Watterdorf, R. J. (1986). Rapid identification of triploid grass carp with Coulter counter and channelyzer. Progressive Fish Culturist 48, 125132.2.0.CO;2>CrossRefGoogle Scholar
Whitaker, H. A., McAndrew, B. J. & Taggart, J. B. (2006). Construction and characterization of a BAC library for the European sea bass Dicentrarchus labrax. Animal Genetics 37, 526.Google Scholar
Wolters, W. R., Lilyestrom, C. G. & Craig, R. J. (1991). Growth, yield and dress-out percentage of diploid and triploid channel catfish in earthen ponds. The Progressive Fish Culturist 53, 3336.Google Scholar
Wu, G., Truksa, M., Datla, N., Vrinten, P., Bauer, J., Zank, T., Cirpus, P., Heinz, E. & Qiu, X. (2005). Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nature Biotechnology 23, 10131017.Google Scholar
Xu, P., Wang, S., Liu, L., Thorsen, J.Kucuktas, H. & Liu, Z. J. (2007). A BAC based physical map of the channel catfish genome. Genomics 90, 380388.Google Scholar
Zhang, P. J., Hayat, M., Joyce, C., Gonzalez Villasenor, L. I., Lin, C. M., Dunham, R. A., Chen, T. T. & Powers, D. A. (1990). Gene-transfer, expression and inheritance of prsv-rainbow trout-gh cDNA in the common carp, Cyprinus carpio (Linnaeus). Molecular Reproduction and Development 25, 313.Google Scholar
Zhu, Z., Li, G., He, L. & Chen, S. (1985). Novel gene transfer into the fertilised eggs of goldfish (Carassius auratus 1758). Journal of Applied Ichthyology 1, 3133.Google Scholar